# COSC 5P05 - Introduction to Lambda-Calculus 

## Term Test 2

Question 1 ( 10 marks): Let $\mathbb{C}$ be a cartesian category, i.e., a category with a terminal object $t$ and products. Show that $A \times t \cong A$ for all objects $A$ of $\mathbb{C}$.
Hint: Notice that $p_{2}=!_{A \times t}=!_{A} \circ p_{1}$ because $t$ is a terminal object.

Solution: Consider the following diagram:


We have

$$
\begin{array}{rlrl}
p_{1} \circ<\operatorname{id}_{A},!_{A}> & =\operatorname{id}_{A}, & \\
<\operatorname{id}_{A},!_{A}>\circ p_{1} & =<p_{1},!_{A} \circ p_{1}> & & \\
& =<p_{1},!_{A \times t}> & & \\
& =<p_{1}, p_{2}> & t \text { terminal } \\
& =\operatorname{id}_{A \times t} . & &
\end{array}
$$

Question 2 (10 marks): An ordered set $(A, \sqsubseteq)$ is a set $A$ with an order relation, i.e., a relation that satisfies (reflexivity) $x \sqsubseteq x$, (transitivity) $x \sqsubseteq y$ and $y \sqsubseteq z$ implies $x \sqsubseteq z$, and (antisymmetry) $x \sqsubseteq y$ and $y \sqsubseteq x$ implies $x=y$. A monotonic function between two order sets $(A, \sqsubseteq)$ and $(B, \sqsubseteq)$ is a function that satisfies: if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$ for all $x, y \in A$.

1. Show that the structure Ord with ordered sets as objects and monotonic functions as morphisms is a category.
2. Show that Ord has products.

Hint: For 2. it is sufficient to show that the set of pairs can be ordered, that the projections are monotonic, and that the function $<f, g>(x)=$ $(f(x), g(x))$ is monotonic if $f$ and $g$ are.

## Solution:

1. It is sufficient to show that the identity function is monotonic and that composition of monotonic functions is also monotonic. The first property is trivial. From $x \sqsubseteq y$ we conclude $f(x) \sqsubseteq f(y)$ if $f$ is monotonic. This implies for every monotonic $g$ that $g(f(x)) \sqsubseteq g(f(y))$. This shows that $g \circ f$ is monotonic.
2. First, we show that the set of pairs $A \times B$ is an ordered set with order $(x, u) \sqsubseteq(y, v)$ iff $x \sqsubseteq y$ and $u \sqsubseteq v$. This relation is reflexive since $x \sqsubseteq x$ and $u \sqsubseteq u$ implies $(x, u) \sqsubseteq(x, u)$. It is transitive because $(x, u) \sqsubseteq(y, v)$ and $(y, v) \sqsubseteq(z, w)$ implies $x \sqsubseteq y, y \sqsubseteq z, u \sqsubseteq v$ and $v \sqsubseteq w$. Since $A$ and $B$ are ordered sets we obtain $x \sqsubseteq z$ and $u \sqsubseteq w$, showing that $(x, u) \sqsubseteq(z, w)$. Finally, the relation is also antisymmetric because $(x, u) \sqsubseteq(y, v)$ and $(y, v) \sqsubseteq(x, u)$ implies $x \sqsubseteq y, y \sqsubseteq x, u \sqsubseteq v$ and $v \sqsubseteq u$. Since $A$ and $B$ are ordered sets we obtain $x=y$ and $u=v$, showing that $(x, u)=(y, v)$. Now, suppose $(x, u) \sqsubseteq(y, v)$. Then we have $x \sqsubseteq y$ and $u \sqsubseteq v$, i.e., $p_{1}(x, u) \sqsubseteq p_{1}(y, v)$ and $p_{2}(x, u) \sqsubseteq p_{2}(y, v)$. Last but not least, suppose $x \sqsubseteq y$ and $f$ and $g$ are monotonic. Then we get $f(x) \sqsubseteq f(y)$ and $g(x) \sqsubseteq g(y)$ so that $(f(x), g(x)) \sqsubseteq(f(y), g(y))$ follows. This shows $<f, g>(x) \sqsubseteq<f, g>(y)$.
