COSC 5P05 - Introduction to Lambda-Calculus

Term Test 2

Question 1 (10 marks): Let \mathbb{C} be a cartesian category, i.e., a category with a terminal object t and products. Show that $A \times t \cong A$ for all objects A of \mathbb{C} .

Hint: Notice that $p_2 = !_{A \times t} = !_A \circ p_1$ because t is a terminal object.

Solution: Consider the following diagram:

$$\begin{array}{c} A \times t \\ < \operatorname{id}_{A}, !_{A} > \uparrow \qquad \downarrow_{p_{1}} \\ A \xrightarrow{ !_{A} } t \end{array}$$

We have

$$p_1 \circ \langle \operatorname{id}_A, !_A \rangle = \operatorname{id}_A,$$

$$\langle \operatorname{id}_A, !_A \rangle \circ p_1 = \langle p_1, !_A \circ p_1 \rangle$$

$$= \langle p_1, !_{A \times t} \rangle \qquad t \text{ terminal}$$

$$= \langle p_1, p_2 \rangle \qquad t \text{ terminal}$$

$$= \operatorname{id}_{A \times t}.$$

Question 2 (10 marks): An ordered set (A, \sqsubseteq) is a set A with an order relation, i.e., a relation that satisfies (reflexivity) $x \sqsubseteq x$, (transitivity) $x \sqsubseteq y$ and $y \sqsubseteq z$ implies $x \sqsubseteq z$, and (antisymmetry) $x \sqsubseteq y$ and $y \sqsubseteq x$ implies x = y. A monotonic function between two order sets (A, \sqsubseteq) and (B, \sqsubseteq) is a function that satisfies: if $x \sqsubseteq y$, then $f(x) \sqsubseteq f(y)$ for all $x, y \in A$.

- 1. Show that the structure Ord with ordered sets as objects and monotonic functions as morphisms is a category.
- 2. Show that Ord has products.

Hint: For 2. it is sufficient to show that the set of pairs can be ordered, that the projections are monotonic, and that the function $\langle f, g \rangle(x) = (f(x), g(x))$ is monotonic if f and g are.

Solution:

- 1. It is sufficient to show that the identity function is monotonic and that composition of monotonic functions is also monotonic. The first property is trivial. From $x \sqsubseteq y$ we conclude $f(x) \sqsubseteq f(y)$ if f is monotonic. This implies for every monotonic g that $g(f(x)) \sqsubseteq g(f(y))$. This shows that $g \circ f$ is monotonic.
- 2. First, we show that the set of pairs $A \times B$ is an ordered set with order $(x, u) \sqsubseteq (y, v)$ iff $x \sqsubseteq y$ and $u \sqsubseteq v$. This relation is reflexive since $x \sqsubseteq x$ and $u \sqsubseteq u$ implies $(x, u) \sqsubseteq (x, u)$. It is transitive because $(x, u) \sqsubseteq (y, v)$ and $(y, v) \sqsubseteq (z, w)$ implies $x \sqsubseteq y, y \sqsubseteq z, u \sqsubseteq v$ and $v \sqsubseteq w$. Since A and B are ordered sets we obtain $x \sqsubseteq z$ and $u \sqsubseteq w$, showing that $(x, u) \sqsubseteq (z, w)$. Finally, the relation is also antisymmetric because $(x, u) \sqsubseteq (y, v)$ and $(y, v) \sqsubseteq (x, u)$ implies $x \sqsubseteq y, y \sqsubseteq x, u \sqsubseteq v$ and $v \sqsubseteq u$. Since A and B are ordered sets we obtain x = y and u = v, showing that (x, u) = (y, v). Now, suppose $(x, u) \sqsubseteq (y, v)$. Then we have $x \sqsubseteq y$ and $u \sqsubseteq v$, i.e., $p_1(x, u) \sqsubseteq p_1(y, v)$ and $p_2(x, u) \sqsubseteq p_2(y, v)$. Last but not least, suppose $x \sqsubseteq y$ and f and g are monotonic. Then we get $f(x) \sqsubseteq f(y)$ and $g(x) \sqsubseteq g(y)$ so that $(f(x), g(x)) \sqsubseteq (f(y), g(y))$ follows. This shows $< f, g > (x) \sqsubseteq < f, g > (y)$.