COSC 5P05 - Introduction to Lambda-Calculus

Term Test 2

Question 1 (10 marks): Let \mathbb{C} be a category with products. Show that $a \times b \cong b \times a$ for all objects a and b of \mathbb{C} .

Solution: Consider the following diagram:

We have

$$p_{1} \circ \langle p'_{2}, p'_{1} \rangle \circ \langle p_{2}, p_{1} \rangle = p'_{2} \circ \langle p_{2}, p_{1} \rangle$$

$$= p_{1},$$

$$p_{2} \circ \langle p'_{2}, p'_{1} \rangle \circ \langle p_{2}, p_{1} \rangle = p'_{1} \circ \langle p_{2}, p_{1} \rangle$$

$$= p_{2},$$

so that from the uniqueness of the product morphism $\langle p_2', p_1' \rangle \circ \langle p_2, p_1 \rangle = \mathrm{id}_{a \times b}$ follows. The equation $\langle p_2, p_1 \rangle \circ \langle p_2', p_1' \rangle = \mathrm{id}_{b \times a}$ can be shown analogously.

Question 2 (10 marks): Let \mathbb{C}_1 and \mathbb{C}_2 be categories. Show that one can define a category $\mathbb{C}_1 \times \mathbb{C}_2$ whose objects are pairs (a, b) of objects a from \mathbb{C}_1 and b from \mathbb{C}_2 and whose morphisms are pairs of morphisms from \mathbb{C}_1 and

 \mathbb{C}_2 , that is $(f,g) \in (\mathbb{C}_1 \times \mathbb{C}_2)[(a,b),(c,d)]$ with $f \in \mathbb{C}_1[a,c]$ and $g \in \mathbb{C}_2[b,d]$.

Solution: Suppose $(f,g):(a,b)\to(c,d)$ and $(h,k):(c,d)\to(e,f)$ with $f:a\to c,\ g:b\to d,\ h:c\to e$ and $k:d\to f.$ Then define $(h,k)\circ(f,g)=(h\circ f,k\circ g).$ Then we have

$$(f,g) \circ (\mathrm{id}_a,\mathrm{id}_b) = (f \circ \mathrm{id}_a, g \circ \mathrm{id}_b)$$

$$= (f,g),$$

$$(\mathrm{id}_c,\mathrm{id}_d) \circ (f,g) = (\mathrm{id}_c \circ f,\mathrm{id} \circ g)$$

$$= (f,g),$$

i.e., (id_a, id_b) is the identity on (a, b). Associativity is shown as follows

$$((l,m) \circ (h,k)) \circ (f,g) = (l \circ h, m \circ k) \circ (f,g)$$
$$= (l \circ h \circ f, m \circ k \circ g),$$
$$(l,m) \circ ((h,k) \circ (f,g)) = (l,m) \circ (h \circ f, k \circ g)$$
$$= (l \circ h \circ f, m \circ k \circ g).$$

The last lines of each computation above is correct because composition in \mathbb{C}_1 and \mathbb{C}_2 is associative so that no brackets are needed.