COSC 5P05 - Introduction to Lambda-Calculus

Term Test 2

Question 1 (10 marks): Let \mathbb{C} be a category with products. Show that $a \times b \cong b \times a$ for all objects a and b of \mathbb{C}.

Solution: Consider the following diagram:

We have

$$
\begin{aligned}
p_{1} \circ\left\langle p_{2}^{\prime}, p_{1}^{\prime}\right\rangle \circ\left\langle p_{2}, p_{1}\right\rangle & =p_{2}^{\prime} \circ\left\langle p_{2}, p_{1}\right\rangle \\
& =p_{1}, \\
p_{2} \circ\left\langle p_{2}^{\prime}, p_{1}^{\prime}\right\rangle \circ\left\langle p_{2}, p_{1}\right\rangle & =p_{1}^{\prime} \circ\left\langle p_{2}, p_{1}\right\rangle \\
& =p_{2},
\end{aligned}
$$

so that from the uniqueness of the product morphism $\left\langle p_{2}^{\prime}, p_{1}^{\prime}\right\rangle \circ\left\langle p_{2}, p_{1}\right\rangle=\mathrm{id}_{a \times b}$ follows. The equation $\left\langle p_{2}, p_{1}\right\rangle \circ\left\langle p_{2}^{\prime}, p_{1}^{\prime}\right\rangle=\mathrm{id}_{b \times a}$ can be shown analogously.

Question 2 (10 marks): Let \mathbb{C}_{1} and \mathbb{C}_{2} be categories. Show that one can define a category $\mathbb{C}_{1} \times \mathbb{C}_{2}$ whose objects are pairs (a, b) of objects a from \mathbb{C}_{1} and b from \mathbb{C}_{2} and whose morphisms are pairs of morphisms from \mathbb{C}_{1} and
\mathbb{C}_{2}, that is $(f, g) \in\left(\mathbb{C}_{1} \times \mathbb{C}_{2}\right)[(a, b),(c, d)]$ with $f \in \mathbb{C}_{1}[a, c]$ and $g \in \mathbb{C}_{2}[b, d]$.

Solution: Suppose $(f, g):(a, b) \rightarrow(c, d)$ and $(h, k):(c, d) \rightarrow(e, f)$ with $f: a \rightarrow c, g: b \rightarrow d, h: c \rightarrow e$ and $k: d \rightarrow f$. Then define $(h, k) \circ(f, g)=$ $(h \circ f, k \circ g)$. Then we have

$$
\begin{aligned}
(f, g) \circ\left(\mathrm{id}_{a}, \mathrm{id}_{b}\right) & =\left(f \circ \mathrm{id}_{a}, g \circ \mathrm{id}_{b}\right) \\
& =(f, g), \\
\left(\mathrm{id}_{c}, \mathrm{id}_{d}\right) \circ(f, g) & =\left(\mathrm{id}_{c} \circ f, \mathrm{id} \circ g\right) \\
& =(f, g),
\end{aligned}
$$

i.e., $\left(\mathrm{id}_{a}, \mathrm{id}_{b}\right)$ is the identity on (a, b). Associativity is shown as follows

$$
\begin{aligned}
((l, m) \circ(h, k)) \circ(f, g) & =(l \circ h, m \circ k) \circ(f, g) \\
& =(l \circ h \circ f, m \circ k \circ g), \\
(l, m) \circ((h, k) \circ(f, g)) & =(l, m) \circ(h \circ f, k \circ g) \\
& =(l \circ h \circ f, m \circ k \circ g) .
\end{aligned}
$$

The last lines of each computation above is correct because composition in \mathbb{C}_{1} and \mathbb{C}_{2} is associative so that no brackets are needed.

