COSC 5P05 - Introduction to Lambda-Calculus

Term Test 2

Question 1 (10 marks): Let \mathbb{C} be a category with coproducts. Show that $a+b \cong b+a$ for each pair of objects a, b from \mathbb{C}.

Solution: Consider the following diagram:

We have

$$
\begin{aligned}
{\left[i_{2}, i_{1}\right] \circ\left[j_{2}, j_{1}\right] \circ i_{1} } & =\left[i_{2}, i_{1}\right] \circ j_{2} \\
& =i_{1} \\
& =\operatorname{id}_{a+b} \circ i_{1}, \\
{\left[i_{2}, i_{1}\right] \circ\left[j_{2}, j_{1}\right] \circ i_{2} } & =\left[i_{2}, i_{1}\right] \circ j_{1} \\
& =i_{2} \\
& =\operatorname{id}_{a+b} \circ i_{2}
\end{aligned}
$$

so that from the uniqueness of the coproduct morphism $\left[i_{2}, i_{1}\right] \circ\left[j_{2}, j_{1}\right]=\mathrm{id}_{a+b}$ follows. The equation $\left[j_{2}, j_{1}\right] \circ\left[i_{2}, i_{1}\right]=\mathrm{id}_{b+a}$ can be shown analogously.

Question 2 (10 marks): Let \mathbb{C}_{1} and \mathbb{C}_{2} be categories. Show that one can define a category $\mathbb{C}_{1} \times \mathbb{C}_{2}$ whose objects are pairs (a, b) of objects a from \mathbb{C}_{1} and b from \mathbb{C}_{2} and whose morphisms are pairs of morphisms from \mathbb{C}_{1} and \mathbb{C}_{2}, that is $F \in \mathbb{C}_{1} \times \mathbb{C}_{2}[(a, b),(c, d)]$ iff $F=(f, g)$ with $f \in \mathbb{C}_{1}[a, c]$ and $g \in \mathbb{C}_{2}[b, d]$.

Solution: Suppose $F=(f, g)$ and $G=(h, k)$ with $f \in \mathbb{C}_{1}[a, c], g \in \mathbb{C}_{2}[b, d]$, $h \in \mathbb{C}_{1}[c, e]$ and $k \in \mathbb{C}_{2}[d, f]$. Then define $G \circ F=(h \circ f, k \circ g)$. Then we have

$$
\begin{aligned}
F \circ\left(\mathrm{id}_{a}, \mathrm{id}_{b}\right) & =\left(f \circ \mathrm{id}_{a}, g \circ \mathrm{id}_{b}\right) \\
& =(f, g) \\
& =F, \\
\left(\mathrm{id}_{c}, \mathrm{id}_{d}\right) \circ F & =\left(\mathrm{id}_{c} \circ f, \mathrm{id} \circ g\right) \\
& =(f, g) \\
& =F,
\end{aligned}
$$

i.e., $\left(\mathrm{id}_{a}, \mathrm{id}_{b}\right)$ is the identity on (a, b). Associativity is shown as follows

$$
\begin{aligned}
(H \circ G) \circ F & =((l, m) \circ(h, k)) \circ(f, g) \\
& =(l \circ h, m \circ k) \circ(f, g) \\
& =(l \circ h \circ g, m \circ k \circ g), \\
H \circ(G \circ F) & =(l, m) \circ((h, k) \circ(f, g)) \\
& =(l, m) \circ(h \circ f, k \circ g) \\
& =(l \circ h \circ g, m \circ k \circ g) .
\end{aligned}
$$

The last lines of each computation above is correct because composition in \mathbb{C}_{1} and \mathbb{C}_{2} is associative so that no brackets are needed.

