
Logic in Computer Science

Michael Winter
Brock University

September 19, 2014

2

Chapter 1

Propositional Logic

The first language we consider is the language of propositional logic. It is
based on propositions (or declarative sentences) which can either be true or
false. Some examples are:

1. Grass is green.

2. The sky is yellow.

3. Every natural number n > 2 is the sum of two prime numbers.

4. If I do not study then I get an F in this course.

Sentence (1) is obviously true, whereas sentences (2) is false (at least on
earth). Sentence (3) is the so-called Goldbach conjecture. Nobody actu-
ally knows whether that sentence is true or false (it is an open problem in
mathematics). Nevertheless, it is either one - true or false. Sentence (4) is
remarkable since it built from smaller sentences by using certain construc-
tions. Two two propositions ’I do not study’ and ’I get an F in this course’
are combined using an ’If ... then ...’ construction. Even the proposition
’I do not study’ can be considered to be the result of applying a ’not ...’
construction to the proposition ’I do study’.

Some examples for sentences that are not propositions are:

• May the force be with you.

• Go, clean up your room!

• How are you today?

3

4 CHAPTER 1. PROPOSITIONAL LOGIC

The sentences above are formulated in plain English. Such a represen-
tation of propositions is not very suitable for a computer. Therefore, we
are going to introduce a formal language of propositions. This language can
easily be manipulated by a program.

1.1 Syntax

We are going to consider certain declarative sentences as being atomic. For
example, the sentences (1)-(3) are atomic. They cannot be decomposed into
smaller propositions. We will use the symbol ⊥ to denote falsehood, and
distinct symbols p, q, r, . . . for arbitrary atomic sentences.

Definition 1 Let P be a set of propositional variables. The set Prop of
propositional formulas are those which can be obtained by using the following
rules finitely many times:

1. Each element p ∈ P is a propositional formula, i.e., P ⊆ Prop.

2. ⊥ is a propositional formula, i.e, ⊥ ∈ Prop.

3. If φ ∈ Prop then ¬φ ∈ Prop.

4. If φ1, φ2 ∈ Prop then

(a) φ1 ∧ φ2 ∈ Prop and

(b) φ1 ∨ φ2 ∈ Prop and

(c) φ1 → φ2 ∈ Prop.

The previous definition defines the set of formulas by giving a set of rules
which may be applied to a base set finitely many times. We also say that
the set Prop is defined recursively by those rules. A set defined in such a
way always provides a principle of induction. In the example of Prop that
principle reads as follows. If we want to show that a certain property N is
true for all elements in Prop it is sufficient to

Base case: show the property N for the elements in P and the special for-
mula ⊥;

Induction step I: show the property N for ¬φ by assuming that it is al-
ready true for φ (induction hypothesis);

1.2. SEMANTICS 5

Induction step II: show the property N for φ1 ⊗φ2 for ⊗ ∈ {∧,∨,→} by
assuming that it is already true for φ1 and φ2 (induction hypothesis).

Why is this principle valid? Intuitively we may argue the following: Every
formula is constructed by applying the rules finitely many times to the base
set. The base case of the induction shows that the property N is true in the
base set, and the induction step shows that if we apply any rule N remains
to be true.

It is possible to prove that this induction principle is valid in general
by relating it to the well-known mathematical induction (on the natural
numbers). But this is out of the scope of this lecture.

We adopt certain precedence rules of the logical symbols. ¬ binds more
tightly than ∧, ∧ tighter than ∨, and ∨ tighter than →. For example, the
proposition

p ∧ q ∨ ¬r → p

has to be read as
((p ∧ q) ∨ (¬r)) → p.

Last but not least, we will use the following abbreviations. We write ⊤ for
¬⊥ and φ1 ↔ φ2 for (φ1 → φ2) ∧ (φ2 → φ1).

1.2 Semantics

We want to define what it means for a formula to be valid (or true). For-
mulas are built from propositional variables representing arbitrary atomic
propositions. To determine the validity of the formula we have to replace
those variables by actual propositions, which are either true or false. We can
eliminate the intermediate step and just consider truth assignments.

Definition 2 A truth assignment is a function v : P → B from the proposi-
tional variables into the set of truth values B = {T,F}.

A given truth assignment can be extended to the full set of propositional
formulas.

Definition 3 Let v be a truth assignment. The extension v̄ : Prop → B of
v is defined by:

1. v̄(p) = v(p) for every p ∈ P .

6 CHAPTER 1. PROPOSITIONAL LOGIC

2. v̄(⊥) = F.

3. v̄(¬φ) =
{

T if v̄(φ) = F,
F otherwise.

4. v̄(φ1 ∧ φ2) =

{
T if v̄(φ1) = T and v̄(φ2) = T,
F otherwise.

5. v̄(φ1 ∨ φ2) =

{
T if v̄(φ1) = T or v̄(φ2) = T,
F otherwise.

6. v̄(φ1 → φ2) =

{
F if v̄(φ1) = T and v̄(φ2) = F,
T otherwise.

v is said to satisfy a formula φ iff1 v̄(φ) = T. Furthermore, v is said to
satisfy a set Σ ⊆ Prop of formulas iff v satisfies φ for all φ ∈ Σ.

Notice that v satisfies φ is equivalent to v satisfies {φ}. Based on the
previous definition we now may state the main definition of this section.

Definition 4 Let φ ∈ Prop be a formula, and Σ ⊆ Prop be a set of formulas.
Σ tautologically implies φ (written Σ |= φ) iff every truth assignment that
satisfies Σ also satisfies φ.

Consider the special case where Σ = ∅. In that case every truth assign-
ment satisfies all elements in Σ (there are none). Hence we are left with
Σ |= φ iff every truth satisfies φ. In this situation we say that φ is a tautol-
ogy or φ is valid (written |= φ). On the other hand, we call φ satisfiable if
there is a truth assignment satisfying φ. Obviously, satisfiability is weaker
concept since it requires just the existence of one particular truth assign-
ment whereas validity quantifies over all truth assignments. Both concepts
are closely related shown by the following lemma.

Lemma 5 Let φ be a formula. Then φ is satisfiable iff ¬φ is not valid.

Proof. ⇒: Assume φ is satisfiable. Then there is a truth assignment v with
v̄(φ) = T. We conclude v̄(¬φ) = F, and, hence, ¬φ is not valid.

⇐: If ¬φ is not valid then there is a truth assignment v with v̄(¬φ) = F.
We conclude v̄(φ) = T, and, hence, φ is satisfiable. �

To determine the truth value of a given formula and a truth assignment v
we just need to know the values of v for a finite set of propositional variables.

1We use the abbreviation iff for ’if and only if’.

1.2. SEMANTICS 7

Lemma 6 Let φ ∈ Prop be a formula, and v1 and v2 be truth assignments
which coincide on all propositional variables that occur in φ, i.e., v1(p) =
v2(p) for all p ∈ P in φ. Then v̄1(φ) = v̄2(φ).

Proof. The proof is done by induction. If φ is a propositional variable we
get

v̄1(φ) = v1(p) = v2(p) = v̄2(φ)

by the assumption on v1 and v2. If φ = ⊥ we get immediately

v̄1(φ) = F = v̄2(φ).

Now, assume φ = ¬φ′ for a formula φ′ ∈ Prop. Every propositional variable
occurring in φ′ occurs in a formula of Σ (namely φ). Therefore, v̄1(φ

′) =
v̄2(φ

′) by the induction hypothesis. We conclude

v̄1(φ) =

{
T if v̄1(φ

′) = F,
F otherwise.

=

{
T if v̄2(φ

′) = F,
F otherwise.

= v̄2(φ).

The remaining cases are shown similarly. �
The last lemma immediately implies the following corollary.

Corollary 7 Let Σ ⊆ Prop be a set of formulas, and v1 and v2 be truth as-
signments which coincide on all propositional variables that occur in formulas
of Σ. Then v̄1(φ) = v̄2(φ) for all formulas φ ∈ Σ.

Notice, in the situation of the last corollary v1 satisfies Σ iff v2 satisfies
Σ.

If Σ = {φ1, . . . , φn} is finite we may use truth tables to check whether or
not

{φ1, . . . , φn} |= φ.

Let V = {p1, . . . , pk} be the set of all propositional variables occurring in
Σ ∪ {φ}. By the last lemma we just have to consider truth assignments
that differ on at least one element of V . There are exactly 2k different truth
assignments. These truth assignments and their extension to the formulas in
Σ ∪ {φ} can be listed in a table.

8 CHAPTER 1. PROPOSITIONAL LOGIC

Example 8 Let Σ = {¬q,¬p → q} and φ = p. In this case V = {p, q} so
that we have to consider 22 = 4 different truth assignments leading to the
initial table

p q
T T
T F
F T
F F

Each row corresponds to one truth assignment (To be precise, each row cor-
responds to all truth assignments with the given values for p and q). This
table can now be extended to formulas Σ ∪ {φ}:

p q ¬p ¬q ¬p→ q
T T F F T
T F F T T
F T T F T
F F T T F

Just the truth assignment corresponding to row number 2 satisfies Σ (entry
T in that row for each formula in Σ). The entry for φ(= p) in row 2 is also
T so that we can conclude Σ |= φ.

Truth tables can also be used to visualize the logical connectives ¬,∧,∨,→
as well as the derived connective ↔. The truth table is as follows:

p q ¬p p ∧ q p ∨ q p→ q p↔ q
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

If we want to determine the truth value of a long formula we will occa-
sionally use a more compact form of a truth table. Here we will denote the
truth value of subformulas just beneath the operator symbol. The following
example shows that the formula ((p ∨ q) ∧ ((p → r) ∧ (q → r))) → r is a

1.2. SEMANTICS 9

tautology.

p q r ((p∨q)∧((p → r)∧(q → r))) → r
T T T T T T T T T
T T F T F F F F T
T F T T T T T T T
T F F T F F F T T
F T T T T T T T T
F T F T F T F F T
F F T F F T T T T
F F F F F T T T T

Theorem 9 Let Σ ⊆ Prop be a finite set of formulas, and φ ∈ Prop be a
formula. Then the statement Σ |= φ is decidable.

Proof. The truth table method serves as a decision algorithm. �
Let us consider an example that show how a problem can be formulated

and solved using the language of propositions and truth tables.

Example 10 John, a zoologist, is searching for a rare bird named Oona on
an archipelago of islands inhabited by knights and knaves. Knights always
tell the truth, and knaves always lie. On the first island John meets two
inhabitants, Alan and Robert. He asks both wether Oona is on that island.
Their answers are:

Alan: ’If Robert and I are both knights, then Oona is on the island.’

Robert: ’If Alan and I are both knights, then Oona is on the island.’

John is completely puzzled and needs our help.

Take A to mean ’Alan is a knight’, R to mean ’Robert is a knight’, and
O to mean ’Oona is on the island’. What Alan said can be translated as
A ∧ R → O. This is, of course, true if and only if Alan is a knight so that
we get A ↔ (A ∧ R → O). Similarly we get R ↔ (A ∧ R → O) so that the
formula

(A↔ (A ∧R → O)) ∧ (R ↔ (A ∧R → O))

10 CHAPTER 1. PROPOSITIONAL LOGIC

is true in the current situation. Consequently, we are interested in those truth
assignments v (to be precise in the value v(O)) that satisfy this formula.

A R O (A↔ (A∧R → O))∧(R ↔ (A∧R → O))
T T T T T T T T T T
T T F F T F F F T F
T F T T F T F F F T
T F F T F T F F F T
F T T F F T F T F T
F T F F F T F T F T
F F T F F T F F F T
F F F F F T F F F T

The truth table shows that there is one truth assignment satisfying the for-
mula. The truth value for O is T meaning that Oona is on the island. In
addition, we are also able to derive that Alan and Robert are knights.

1.3 Natural Deduction

In this section we want to investigate a formal calculus for reasoning about
propositions. This calculus, called natural deduction, uses proof rules, which
allow to infer formulas from other formulas. By applying these rules in
succession, we may infer a conclusion from a finite set of premises. Suppose
a set {φ1, . . . , φn} of formulas is given. We start to apply a proof rule of
the calculus to certain elements of the set of premises generating a new
formula ψ1. In the next step we apply a rule to certain elements of the set
{φ1, . . . , φn, ψ1} generating a new formula ψ2. Continuous application of the
rules to a growing set of formulas will finally end in the intended result ψ -
the conclusion. In this case we are successful in deriving ψ from the set of
premises, and we will denote that by

φ1, . . . , φn ⊢ ψ.

Some rules allow us to make temporary assumptions, i.e., such a rule enlarges
the set of premises temporarily. The derivation itself is actually a tree with
the premises and temporary assumptions we as leafs, applications of rules
as nodes, and the conclusion as the root. The skeleton of a proof may look
as follows (◦ denotes a premises or assumption, • denotes an intermediate
formula generated by a certain rule, ∗ denotes the conclusion):

1.3. NATURAL DEDUCTION 11

◦ ◦ ◦

•

@@@@@@@

~~~~~~~
◦ ◦ • ◦

•

OOOOOOOOOOOOOO

~~~~~~~
•

@@@@@@@

~~~~~~~

∗

OOOOOOOOOOOOOO

oooooooooooooo

The proof rules of the natural deduction calculus are grouped by the logi-
cal operators and constants of the propositional language. For each operator
we have introduction and elimination rules, and for the constant ⊥ a single
rule. Introduction rules are used to infer a formula containing the operator as
the outermost symbol. Elimination rules are used to derive other properties
from a formula containing the operator. We want to discuss four rules in
detail.

And introduction: This rule is used to infer a formula of the form φ ∧ ψ.
It seems obvious that we are allowed to conclude this formula if we
have already concluded both φ and ψ. Therefore, the rule becomes

φ ψ

φ ∧ ψ ∧I
.

The rule is binary, i.e, it has to be applied to two subtrees, the first
deriving φ, the second deriving ψ. To the right of the line we denote
the name of the rule (I means introduction, E means elimination).

And elimination: This rule is used to infer other properties from a formula
of the form φ ∧ ψ. We have to such elimination rules given by

φ ∧ ψ
φ ∧E1

φ ∧ ψ
ψ

∧E2
.

Implication introduction: In order to infer a formula of the form φ →
ψ we are allowed to temporarily make the assumption φ. From this
assumption we have to derive the formula ψ. If we are successful we
denote this derivation by

φ....
ψ.



12 CHAPTER 1. PROPOSITIONAL LOGIC

In that case we are allowed to conclude φ → ψ. In addition, the tem-
porary assumption φ is not longer needed. We are allowed to discard
it, denoted by [φ]. The rule finally is:

[φ]
....
ψ

φ→ ψ
→ I

.

PBC: This rule is neither an introduction nor an elimination rule. PBCis
an abbreviation for proof by contradiction. If we are able to show that
¬φ leads to a contradiction, the formula ⊥, then we are allowed to
conclude φ. The rule reads:

[¬φ]
....
⊥
φ PBC.

Table 1.1 lists the rules of natural deduction for propositional logic.

Example 11 (Example 8 revisited) In Example 8 we have shown using
truth tables that ¬p→ q,¬q |= p. The following derivation verifies the related
property ¬p→ q,¬q ⊢ p:

¬p→ q [¬p]1
q →E ¬q

⊥ ¬E
p PBC1

We use the operator ↔ as an abbreviation, i.e., the formula φ↔ ψ means
(φ→ ψ)∧ (ψ → φ). Occasionally we will use the following (derived) rule for
this operator.

introduction rule elimination rule

↔
φ→ ψ ψ → φ

φ↔ ψ
↔ I

φ↔ ψ

φ→ ψ
↔E1

φ↔ ψ

ψ → φ
↔E2



1.3. NATURAL DEDUCTION 13

introduction rule elimination rule

∧
φ ψ

φ ∧ ψ ∧I φ ∧ ψ
φ ∧E1

φ ∧ ψ
ψ

∧E2

∨
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2 φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

χ ∨E

→

[φ]
....
ψ

φ→ ψ
→ I

φ φ→ ψ

ψ
→E

¬

[φ]
....
⊥
¬φ ¬I

φ ¬φ
⊥ ¬E

PBC

[¬φ]
....
⊥
φ PBC

Table 1.1: Rules of natural deduction for propositional logic



14 CHAPTER 1. PROPOSITIONAL LOGIC

Example 12 (Example 10 revisited) In Example 10 we wanted to know
whether Oona is on that particular island. We were able to use the two
propositions A ↔ (A ∧ R → O) and R ↔ (A ∧ R → O), which we derived
from the statements of the inhabitants. Actually, we verified using a truth
table that

A↔ (A ∧R → O), R ↔ (A ∧R → O) |= O.

Again, we want to provide the corresponding derivation verifying

A↔ (A ∧R → O), R ↔ (A ∧R → O) ⊢ O.

First, we give a derivation for A↔ (A ∧R → O) ⊢ A:

[A ∧R]1
A

∧E1
[¬A]2

⊥ ¬E
O

PBC

A ∧R → O →I1
A↔ (A ∧R → O)

(A ∧R → O) → A
↔E2

A
→E

[¬A]2
⊥ ¬E
A PBC2

R ↔ (A ∧ R → O) ⊢ R can be derived analogously. In the final derivation

below we replaced those derivations by

F1....
A and

F2....
R , respectively.

F1....
A

F2....
R

A ∧R ∧I

F1....
A

A↔ (A ∧R → O)

A→ (A ∧R → O)
↔E2

A ∧R → O
→E

O
→E

The property of natural deduction we are interested in is its soundness.

Theorem 13 (Soundness) Let φ1, . . . , φn and ψ be propositional formulas.
If φ1, . . . , φn ⊢ ψ is valid, then φ1, . . . , φn |= ψ holds.

Proof. The proof is done by induction on the derivation φ1, . . . , φn ⊢ ψ.
(Base case): In this case the proof is just a premises, i.e., we have ψ ∈

{φ1, . . . , φn}. Assume v is a truth assignment satisfying the set of premises,



1.3. NATURAL DEDUCTION 15

i.e., v̄(φi) = T for all i ∈ {1, . . . , n}. Then we conclude v̄(ψ) = T, and, hence
φ1, . . . , φn |= ψ.

(Induction step): We distinguish several cases according the last rule
applied.

∧I : In this case ψ = ψ1 ∧ ψ2 and we have derivations φ1, . . . , φn ⊢ ψ1 and
φ1, . . . , φn ⊢ ψ2. From the induction hypothesis we get φ1, . . . , φn |= ψ1

and φ1, . . . , φn |= ψ2. Now, assume v is a truth assignment satisfying
the set of premises. Then we have v̄(ψ1) = T and v̄(ψ2) = T. We
conclude v̄(ψ) = T, and, hence φ1, . . . , φn |= ψ.

∧E1 : In this case we have a derivation φ1, . . . , φn ⊢ ψ∧ψ′ for some formula
ψ′. Now, assume v is a truth assignment satisfying the set of premises.
By the induction hypothesis we conclude v̄(ψ ∧ψ′) = T, which implies
v̄(ψ) = T, and, hence, φ1, . . . , φn |= ψ.

∧E2 : Analogously to ∧E1.

∨I1 : In this case ψ = ψ1 ∨ ψ2 and we have a derivation φ1, . . . , φn ⊢ ψ1.
Now, assume v is a truth assignment satisfying the set of premises.
By the induction hypothesis we conclude v̄(ψ1) = T, which implies
v̄(ψ) = T, and, hence, φ1, . . . , φn |= ψ.

∨I2 : Analogously to ∨I1.

∨E : In this case we have the following derivations

φ1, . . . , φn ⊢ψ1 ∨ ψ2

φ1, . . . , φn, ψ1⊢ψ
φ1, . . . , φn, ψ2⊢ψ

Now, assume v is a truth assignment satisfying {φ1, . . . , φn}. We get
v̄(ψ1 ∨ψ2) = T from the induction hypothesis, i.e., either v̄(ψ1) = T or
v̄(ψ2) = T. in the first case we conclude that v satisfies {φ1, . . . , φn, ψ1}.
Using the induction hypothesis again we get v̄(ψ) = T. If v̄(ψ2) = T
we conclude v̄(ψ) = T analogously.

→I : In this case ψ = ψ1 → ψ2 and we have a derivation φ1, . . . , φn, ψ1 ⊢ ψ2.
Now, assume v is a truth assignment satisfying {φ1, . . . , φn}. If v also
satisfies ψ1 we conclude v̄(ψ2) = T from the induction hypothesis, and,
hence, v̄(ψ) = T. If v does not satisfy ψ1 we immediately get v̄(ψ) = T.



16 CHAPTER 1. PROPOSITIONAL LOGIC

→E : In this case we have derivations φ1, . . . , φn ⊢ ψ′ and φ1, . . . , φn ⊢ ψ′ →
ψ for some formula ψ′. Now, assume v is a truth assignment satisfying
the set of premises. From the induction hypothesis we get v̄(ψ′) = T
and v̄(ψ′ → ψ) = T. We conclude v̄(ψ) = T.

¬I : In this case ψ = ¬ψ′ and we have a derivation φ1, . . . , φn, ψ
′ ⊢ ⊥.

Now, assume v is a truth assignment satisfying {φ1, . . . , φn}. If v also
satisfies ψ′ we conclude v̄(⊥) = T from the induction hypothesis. The
last statement is a contradiction so that we conclude v̄(ψ′) = F, and,
hence, v̄(ψ) = T.

¬E : In this case ψ = ⊥ and we have derivations φ1, . . . , φn ⊢ ψ′ and
φ1, . . . , φn ⊢ ¬ψ′ for some formula ψ′. Now, assume v is a truth assign-
ment satisfying the set of premises. From the induction hypothesis we
get v̄(ψ′) = T and v̄(¬ψ′) = T. This is a contradiction so that such a
v does not exist showing φ1, . . . , φn |= ⊥.

PBC : In this case we have a derivation φ1, . . . , φn,¬ψ ⊢ ⊥. Now, assume v
is a truth assignment satisfying {φ1, . . . , φn}. If v does not satisfy ψ we
conclude v̄(⊥) = T from the induction hypothesis. The last statement
is a contradiction so that we conclude v̄(ψ) = T.

This completes the proof. �
In the remainder of this section we want to show completeness of the

calculus. Assuming that φ1, . . . , φn |= ψ holds, the proof proceeds in three
steps:

1. Show that |= φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))) holds.

2. Show that ⊢ φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))).

3. Show that φ1, . . . , φn ⊢ ψ.

The first and the last step are not very hard and shown in the following
lemma.

Lemma 14 Let φ1, . . . , φn and ψ be propositional formulas. Then we have:

1. φ1, . . . , φn |= ψ iff |= φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))).

2. φ1, . . . , φn ⊢ ψ iff ⊢ φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))).



1.3. NATURAL DEDUCTION 17

Proof. In this proof we will denote the formula φ1 → (φ2 → (φ3 →
(. . . (φn → ψ) . . .))) by χ.

1. ⇒: Assume v is a truth assignment. If v satisfies the set of formulas
{φ1, . . . , φn} we conclude v̄(ψ) = T, and, hence, v̄(χ) = T. If there is
an i with v̄(φi) = F we immediately conclude v̄(χ) = T.

⇐: Assume v is a truth assignment with v̄(φi) = T for all i ∈ {1, . . . , n}.
Since χ is a tautology we have v̄(χ) = T. From the fact that χ is a
chain of implications we conclude v̄(ψ), and, hence, φ1, . . . , φn |= ψ.

2. ⇒: Assume there is a derivation φ1, . . . , φn ⊢ ψ. By applying the rule
→ I n-times we get a derivation ⊢ χ.
⇐: Assume there is a derivation ⊢ χ. By applying the rule → E n-
times with the formula φi in the ith application we get a derivation
φ1, . . . , φn ⊢ ψ. �

In order to verify Step 2. we need derivations of some common formulas.
They are collected in the next lemma.

Lemma 15 Let φ, φ1, φ2 ∈ Prop be propositional formulas. Then we have:

1. ⊢ φ↔ ¬¬φ.

2. ⊢ ¬φ1 ∧ ¬φ2 ↔ ¬(φ1 ∨ φ2).

3. ⊢ ¬φ1 ∨ ¬φ2 ↔ ¬(φ1 ∧ φ2).

4. ⊢ φ ∨ ¬φ.

5. ⊢ (φ1 → φ2) ↔ ¬φ1 ∨ φ2.

6. ⊢ ¬(φ1 → φ2) ↔ φ1 ∧ ¬φ2.

Proof. In each case we give derivations for both implications.

1.
[¬φ]1 [φ]2

⊥ ¬E
¬¬φ ¬I1

φ→ ¬¬φ → I2

[¬¬φ]2 [¬φ]1
⊥ ¬E
φ PBC1

¬¬φ→ φ → I2



18 CHAPTER 1. PROPOSITIONAL LOGIC

2.

[φ1 ∨ φ2]
2

[¬φ1 ∧ ¬φ2]
3

¬φ1
∧E1 [φ1]

1

⊥ ¬E

[¬φ1 ∧ ¬φ2]
3

¬φ2
∧E2 [φ2]

1

⊥ ¬E

⊥ ∨E1

¬(φ1 ∨ φ2)
¬I2

¬φ1 ∧ ¬φ2 → ¬(φ1 ∨ φ2)
→ I3

[¬(φ1 ∨ φ2)]
3

[φ1]
1

φ1 ∨ φ2
∨I1

⊥ ¬E
¬φ1 ¬I1

[¬(φ1 ∨ φ2)]
3

[φ2]
2

φ1 ∨ φ2
∨I2

⊥ ¬E
¬φ2 ¬I2

¬φ1 ∧ ¬φ2
∧I

¬(φ1 ∨ φ2) → ¬φ1 ∧ ¬φ2
→ I3

3.

[¬φ1 ∨ ¬φ2]
3

[¬φ1]
1

[φ1 ∧ φ2]
2

φ1
∧E1

⊥ ¬E
[¬φ2]

1
[φ1 ∧ φ2]

2

φ2
∧E1

⊥ ¬E

⊥ ∨E1

¬(φ1 ∧ φ2)
¬I2

¬φ1 ∨ ¬φ2 → ¬(φ1 ∧ φ2)
→ I3

For the second derivation we first show that ¬(¬φ1 ∨ ¬φ2) ⊢ φi for
i = 1, 2.

¬(¬φ1 ∨ ¬φ2)
[¬φi]

1

¬φ1 ∨ ¬φ2
∨Ii

⊥ ¬E
φi PBC

1

Using the derivation above we get

[¬(φ1 ∧ φ2)]
2

[¬(¬φ1 ∨ ¬φ2)]
1

....
φ1

[¬(¬φ1 ∨ ¬φ2)]
1

....
φ2

φ1 ∧ φ2
∧I

⊥ ¬E
¬φ1 ∨ ¬φ2

PBC1

¬(φ1 ∧ φ2) → ¬φ1 ∨ ¬φ2
→ I2



1.3. NATURAL DEDUCTION 19

4.

[¬(φ ∨ ¬φ)]2

[¬(φ ∨ ¬φ)]2
[φ]1

φ ∨ ¬φ ∨I1
⊥ ¬E
¬φ ¬I1

φ ∨ ¬φ ∨I2
⊥ ¬E

φ ∨ ¬φ PBC2

5. The first derivation uses 4.

....
φ1 ∨ ¬φ1

[φ1 → φ2]
2 [φ1]

1

φ2
→E

¬φ1 ∨ φ2
∨I2

[¬φ1]
1

¬φ1 ∨ φ2
∨I1

¬φ1 ∨ φ2
∨E1

(φ1 → φ2) → ¬φ1 ∨ φ2
→ I2

[¬φ1 ∨ φ2]
3

[¬φ1]
1 [φ1]

2

⊥ ¬E
φ2

PBC [φ2]
1

φ2 ∨E1

φ1 → φ2 → I2

¬φ1 ∨ φ2 → (φ1 → φ2)
→ I3

6.

[¬(φ1 → φ2)]
4

[¬φ1]
2 [φ1]

1

⊥ ¬E
φ2

PBC
φ1 → φ2 → I1

⊥ ¬E
φ1 PBC2

[¬(φ1 → φ2)]
4

[φ2]
3

φ1 → φ2
→ I

⊥ ¬E
¬φ2 ¬I3

φ1 ∧ ¬φ2
∧I

¬(φ1 → φ2) → φ1 ∧ ¬φ2
→ I4

[φ1 ∧ ¬φ2]
2

¬φ2
∧E2

[φ1 → φ2]
1

[φ1 ∧ ¬φ2]
2

φ1
∧E1

φ2
→E

⊥ ¬E
¬(φ1 → φ2)

¬I1

φ1 ∧ ¬φ2 → ¬(φ1 → φ2)
→ I2



20 CHAPTER 1. PROPOSITIONAL LOGIC

This completes the proof. �
The basic idea of Step 2. is the following. For each line of the truth table

we going to construct a proof. If the formula has n propositional variables,
the truth table has 2n rows. We assemble those 2n proofs into a single proof.

Lemma 16 Let φ be a formula with propositional variables among p1, . . . , pn,
and v be a truth assignment. Define

p̂i :=

{
pi if v(pi) = T

¬pi if v(pi) = F.

Then we have:

1. p̂1, . . . , p̂n ⊢ φ if v̄(φ) = T.

2. p̂1, . . . , p̂n ⊢ ¬φ if v̄(φ) = F.

Proof. The proof is done by induction on the structure of φ.

φ = p : In this case the assertions p ⊢ p and ¬p ⊢ ¬p are trivial.

φ = ⊥ : In this case we know v̄(φ) = F. We conclude

[⊥]

¬⊥ ¬I

φ = ¬φ′ : The propositional variables in φ′ are those from φ. We distinguish
two cases. If v̄(φ) = T, then v̄(φ′) = F. By the induction hypothesis
there is a derivation p̂1, . . . , p̂n ⊢ ¬φ′. Since ¬φ′ = φ we are done.
If v̄(φ) = F, then v̄(φ′) = T. By the induction hypothesis there is a
derivation p̂1, . . . , p̂n ⊢ φ′. We conclude

Lemma 15(1)
....

φ′ → ¬¬φ′

....
φ′

¬¬φ′ →E

which is a derivation p̂1, . . . , p̂n ⊢ ¬φ.



1.3. NATURAL DEDUCTION 21

φ = φ1 ∧ φ2 : If v̄(φ) = T, then v̄(φ1) = T and v̄(φ2) = T. By the induction
hypothesis we get derivations p̂1, . . . , p̂n ⊢ φ1 and p̂1, . . . , p̂n ⊢ φ2. We
combine those derivations using ∧I:

....
φ1

....
φ2

φ1 ∧ φ2
∧I

If v̄(φ) = F, then v̄(φ1) = F or v̄(φ2) = F. Assume, w.l.o.g., v̄(φ1) = F.
From the induction hypothesis we get a derivation p̂1, . . . , p̂n ⊢ ¬φ1 so
that we conclude

Lemma 15(3)
....

¬φ1 ∨ ¬φ2 → ¬(φ1 ∧ φ2)

....¬φ1

¬φ1 ∨ ¬φ2
∨I1

¬(φ1 ∧ φ2)
→E

φ = φ1 ∨ φ2 : If v̄(φ) = T then v̄(φ1) = T or v̄(φ2) = T. Assume, w.l.o.g.,
v̄(φ1) = T. From the induction hypothesis we get a derivation p̂1, . . . , p̂n ⊢
φ1 so that we conclude

....
φ1

φ1 ∨ φ2
∨I1

If v̄(φ) = F, then v̄(φ1) = F and v̄(φ2) = F. By the induction hy-
pothesis we get derivations p̂1, . . . , p̂n ⊢ ¬φ1 and p̂1, . . . , p̂n ⊢ ¬φ2. We
conclude

Lemma 15(2)
....

¬φ1 ∧ ¬φ2 → ¬(φ1 ∨ φ2)

....¬φ1

....¬φ2

¬φ1 ∧ ¬φ2
∧I

¬(φ1 ∨ φ2)
→E

φ = φ1 → φ2 : If v̄(φ) = T then v̄(φ1) = F or v̄(φ2) = T. From the induction
hypothesis we get either a derivation p̂1, . . . , p̂n ⊢ ¬φ1 or p̂1, . . . , p̂n ⊢
φ2. In either case get are able to derive ¬φ1 ∨ φ2 using ∨I1 or ∨I2:

....¬φ1

¬φ1 ∨ φ2
∨I1

....
φ2

¬φ1 ∨ φ2
∨I2



22 CHAPTER 1. PROPOSITIONAL LOGIC

We conclude

Lemma 15(5)
....

¬φ1 ∨ φ2 → (φ1 → φ2)

see above....
¬φ1 ∨ φ2

φ1 → φ2
→E

If v̄(φ) = F, then v̄(φ1) = T and v̄(φ2) = F. By the induction hy-
pothesis we get derivations p̂1, . . . , p̂n ⊢ φ1 and p̂1, . . . , p̂n ⊢ ¬φ2. We
conclude

Lemma 15(6)
....

φ1 ∧ ¬φ2 → ¬(φ1 → φ2)

....
φ1

....¬φ2

φ1 ∧ ¬φ2
∧I

¬(φ1 → φ2)
→E

This completes the proof. �
The following lemma shows how to combine the basic proofs derived so

far.

Lemma 17 Let φ1, . . . , φn, φ, ψ be propositional formulas. If φ1, . . . , φn, φ ⊢
ψ and φ1, . . . , φn,¬φ ⊢ ψ then φ1, . . . , φn ⊢ ψ

Proof. Consider the following derivation:

Lemma 15(4)
....

φ ∨ ¬φ

[φ]1
....
ψ

[¬φ]1
....
ψ

ψ
∨E

This completes the proof. �
Finally, we are able to proof the completeness theorem.

Theorem 18 (Completeness) Let φ1, . . . , φn and ψ be propositional for-
mulas. If φ1, . . . , φn |= ψ holds, then φ1, . . . , φn ⊢ ψ is valid.

Proof. Define

φ := φ1 → (φ2 → (φ3 → . . . (φn → ψ) . . .))

and let {p1, . . . , pm} be the set of propositional variables in φ. By Lemma
14(1) we have |= φ. Now, let v1, v2 be two truth assignments with v1(pm) =



1.4. NORMAL FORMS OF FORMULAS 23

T, v2(pm) = F and v1(pi) = v2(pi) for all i ∈ {1, . . . ,m − 1}. Using
the definition from Lemma 16 we get derivations p̂1, . . . , p̂m−1, pm ⊢ φ and
p̂1, . . . , p̂m−1,¬pm ⊢ φ. Lemma 17 shows p̂1, . . . , p̂m−1 ⊢ φ. After m rep-
etitions of the last argument we end up with ⊢ φ. Finally, we conclude
φ1, . . . , φn ⊢ ψ using Lemma 14(2). �

Example 19 (Example 8 revisited again) This time we want to follow
the completeness proof to find a derivation ¬p→ q,¬q ⊢ p. The first step is
to actually consider the formula (¬p→ q) → (¬q → p) and its truth table:

p q (¬p → q) → (¬q → p)
T T F T T F T
T F F T T T T
F T T T T F T
F F T F T T F

For each line in the table we construct a derivation as shown in Lemma 16.
The first row results in a derivation p, q ⊢ (¬p → q) → (¬q → p) (see
derivation (1)). Notice that the premises q is not used in that derivation so
that the same derivation also serves for the second row, i.e., is a derivation
p,¬q ⊢ (¬p → q) → (¬q → p). Following Lemma 17 we combine two copies
of that derivation to a derivation of p ⊢ (¬p → q) → (¬q → p) (see deriva-
tion (2)). This is a redundant step, of course, since (1) is already such a
derivation. We just want to follow the algorithm outlined in the complete-
ness proof literally without any modification (or optimization).

We construct derivations for ¬p, q ⊢ (¬p→ q) → (¬q → p) and ¬p,¬q ⊢
(¬p→ q) → (¬q → p), similarly (see derivation (3) and (4)). Those deriva-
tions are combined in derivation (5).

In the next step we combine derivation (2) and (5) leading to a derivation
of ⊢ (¬p→ q) → (¬q → p). The final step is to modify the derivation to get
a derivation ¬p→ q,¬q ⊢ p (see derivation (7)).

1.4 Normal forms of formulas

Two formulas are said to be equivalent if they have the same meaning. More
formally we get the following definition.



24 CHAPTER 1. PROPOSITIONAL LOGIC

(1
)

p
¬¬

q
∨
p
∨I

2

L
em

m
a
15
(3
)

. . . .
¬¬

q
∨
p
→

(¬
q
→

p)
¬q

→
p

→
E

¬(
¬p

→
q)

∨
(¬
q
→

p)
∨I

2

L
em

m
a
15
(3
)

. . . .
¬(

¬p
→

q)
∨
(¬
q
→

p)
→

((
¬p

→
q)

→
(¬
q
→

p)
)

(¬
p
→

q)
→

(¬
q
→

p)
→

E

(2
)L
em

m
a
15
(4
)

. . . .
q
∨
¬q

(1
)

p
..
.[
q]

1

. . . .
(¬
p
→

q)
→

(¬
q
→

p)

(1
)

p
..
.[
¬q

]1
. . . .

(¬
p
→

q)
→

(¬
q
→

p)

(¬
p
→

q)
→

(¬
q
→

p)
∨E

1

(3
)q

L
em

m
a
15
(1
)

. . . .
q
→

¬¬
q

¬¬
q

→
E

¬¬
q
∨
p
∨I

1

L
em

m
a
15
(3
)

. . . .
¬¬

q
∨
p
→

(¬
q
→

p)
¬q

→
p

→
E

¬(
¬p

→
q)

∨
(¬
q
→

p)
∨I

2

L
em

m
a
15
(3
)

. . . .
¬(

¬p
→

q)
∨
(¬
q
→

p)
→

((
¬p

→
q)

→
(¬
q
→

p)
)

(¬
p
→

q)
→

(¬
q
→

p)
→

E

(4
)¬p

¬q
¬p

∧
¬q

∧I

L
em

m
a
15
(6
)

. . . .
¬p

∧
¬q

→
¬(

¬p
→

q)

¬(
¬p

→
q)

→
E

¬(
¬p

→
q)

∨
(¬
q
→

p)
∨I

1

L
em

m
a
15
(3
)

. . . .
¬(

¬p
→

q)
∨
(¬
q
→

p)
→

((
¬p

→
q)

→
(¬
q
→

p)
)

(¬
p
→

q)
→

(¬
q
→

p)
→

E



1.4. NORMAL FORMS OF FORMULAS 25

(5)

Lemma 15(4)
....

q ∨ ¬q

(3) p . . . [q]1
....

(¬p→ q) → (¬q → p)

(4) p . . . [¬q]1
....

(¬p→ q) → (¬q → p)

(¬p→ q) → (¬q → p) ∨E1

(6)

Lemma 15(4)
....

p ∨ ¬p

(2) [p]1
....

(¬p→ q) → (¬q → p)

(5) [¬p]1
....

(¬p→ q) → (¬q → p)

(¬p→ q) → (¬q → p) ∨E1

(7)

(6)
....

(¬p→ q) → (¬q → p) ¬p→ q
¬q → p →E ¬q

p →E

Definition 20 Let φ, ψ ∈ Prop be propositional formulas. φ and ψ are
equivalent iff φ |= ψ and ψ |= φ.

Due to the soundness and completeness of natural deduction φ and ψ are
equivalent iff φ ⊢ ψ and ψ ⊢ φ. Furthermore, using Lemma 14(2) and the
abbreviation ↔ this property is equivalent to ⊢ φ↔ ψ. Notice that Lemma
15 shows the equivalence of certain formulas.

In this section we want to transform a given formula into one, which
allows an easy validity checks. We want to start with an example.

Example 21 Consider the formula

¬((p→ q) ∨ ⊥) ∨ ¬p.

It seems not to be obvious whether that formula is a tautology, satisfiable
or neither one. The first step is to remove the symbols → and ⊥ from the
formula. We have already shown that φ→ ψ is equivalent to ¬φ ∨ ψ. Later
(see Lemma 22(1)) we will also provide a derivation for ⊥ ↔ φ ∧ ¬φ for an
arbitrary formula φ. By using those equivalences we get the formula

¬(¬p ∨ q ∨ (¬p ∧ p)) ∨ ¬p.



26 CHAPTER 1. PROPOSITIONAL LOGIC

Notice that we also implicitly used the associativity of ∨ (cf. see Lemma
22(3)). In the next step we distribute the negation symbol ¬ over the opera-
tion ∧ and ∨ as indicated in Lemma 15. During this step we will also remove
any occurrences of ¬¬. We end up with

(p ∧ ¬q ∧ (p ∨ ¬p)) ∨ ¬p.

Notice that negation symbol is always attached to a propositional variable. A
propositional variable or the negation of a variable is called a literal. Using
this term, the formula above is built from literals and the operations ∧ and ∨.
The final step in the normalization process is to separate ∧ and ∨ into two
layers. This can be done since we are going to show certain distributivity laws.
Depending on which symbol is used in the top layer we get the conjunctive
normal form (cnf)

(p ∨ ¬p) ∧ (¬q ∨ ¬p) ∧ (p ∨ ¬p ∨ ¬p)

and the disjunctive normal form (dnf)

(p ∧ ¬q ∧ p) ∨ (p ∧ ¬q ∧ ¬p) ∨ ¬p.

The cnf can be used to conclude that the given formula is not a tautology
since its subformula ¬q ∨ ¬p can be false. On the other hand, the dnf shows
that the formula is satisfiable since either of the subformulas p ∧ ¬q ∧ p and
¬p can be satisfied.

First, we have to provide the remaining derivations.

Lemma 22 Let φ, φ1, φ2, φ3 ∈ Prop be propositional formulas. Then we
have:

1. ⊢ φ1 ∧ φ2 ↔ φ2 ∧ φ1.

2. ⊢ φ1 ∨ φ2 ↔ φ2 ∨ φ1.

3. ⊢ ⊥ ↔ φ ∧ ¬φ.

4. ⊢ φ1 ∧ (φ2 ∧ φ3) ↔ (φ1 ∧ φ2) ∧ φ3.

5. ⊢ φ1 ∨ (φ2 ∨ φ3) ↔ (φ1 ∨ φ2) ∨ φ3.

6. ⊢ φ1 ∧ (φ2 ∨ φ3) ↔ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3).



1.4. NORMAL FORMS OF FORMULAS 27

7. ⊢ φ1 ∨ (φ2 ∧ φ3) ↔ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3).

Proof. Again we provide derivations for both implications.

1.

[φ1 ∧ φ2]
1

φ2
∧E2

[φ1 ∧ φ2]
1

φ1
∧E1

φ2 ∧ φ1
∧I

φ1 ∧ φ2 → φ2 ∧ φ1
→ I1

The second derivation is similar.

2.

[φ1 ∨ φ2]
2

[φ1]
1

φ2 ∨ φ1
∨I2

[φ2]
1

φ2 ∨ φ1
∨I1

φ2 ∨ φ1
∨E1

φ1 ∨ φ2 → φ2 ∨ φ1
→ I2

The second derivation is similar.

3.

[⊥]1

φ ∧ ¬φ PBC

⊥ → φ ∧ ¬φ → I1

[φ ∧ ¬φ]1
¬φ ∧E2

[φ ∧ ¬φ]1
φ ∧E1

⊥ ¬E
φ ∧ ¬φ→ ⊥ → I1

4.

[φ1 ∧ (φ2 ∧ φ3)]
1

φ1
∧E1

[φ1 ∧ (φ2 ∧ φ3)]
1

φ2 ∧ φ3
∧E2

φ2
∧E1

φ1 ∧ φ2
∧I

[φ1 ∧ (φ2 ∧ φ3)]
1

φ2 ∧ φ3
∧E2

φ3
∧E2

(φ1 ∧ φ2) ∧ φ3
∧I

φ1 ∧ (φ2 ∧ φ3) → (φ1 ∧ φ2) ∧ φ3
→ I1

The second derivation is similar.



28 CHAPTER 1. PROPOSITIONAL LOGIC

5.

[φ
1
∨
(φ

2
∨
φ
3
)]
3

[φ
1
]2

φ
1
∨
φ
2
∨I

1

(φ
1
∨
φ
2
)
∨
φ
3
∨I

1
[φ

2
∨
φ
3
]2

[φ
2
]1

φ
1
∨
φ
2
∨I

2

(φ
1
∨
φ
2
)
∨
φ
3
∨I

1
[φ

3
]1

(φ
1
∨
φ
2
)
∨
φ
3
∨I

2

(φ
1
∨
φ
2
)
∨
φ
3

∨E
1

(φ
1
∨
φ
2
)
∨
φ
3

∨E
2

φ
1
∨
(φ

2
∨
φ
3
)
→

(φ
1
∨
φ
2
)
∨
φ
3
→

I3

T
h
e
se
co
n
d
d
er
iv
at
io
n
is
si
m
il
ar
.

6.

[φ
1
∧
(φ

2
∨
φ
3
)]
2

φ
2
∨
φ
3

∧E
2

[φ
1
∧
(φ

2
∨
φ
3
)]
2

φ
1

∧E
1

[φ
2
]1

φ
1
∧
φ
2

∧I
(φ

1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)
∨I

1

[φ
1
∧
(φ

2
∨
φ
3
)]
2

φ
1

∧E
1

[φ
3
]1

φ
1
∧
φ
3

∧I
(φ

1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)
∨I

2

(φ
1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)

∨E
1

φ
1
∧
(φ

2
∨
φ
3
)
→

(φ
1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)
→

I2

[(
φ
1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)]
2

[φ
1
∧
φ
2
]1

φ
1

∧E
1

[φ
1
∧
φ
2
]1

φ
2

∧E
2

φ
2
∧
φ
3
∨I

1

φ
1
∧
(φ

2
∨
φ
3
)

∧I

[φ
1
∧
φ
3
]1

φ
1

∧E
1

[φ
1
∧
φ
3
]1

φ
3

∧E
2

φ
2
∧
φ
3
∨I

2

φ
1
∧
(φ

2
∨
φ
3
)

∧I

φ
1
∧
(φ

2
∨
φ
3
)

∨E
1

(φ
1
∧
φ
2
)
∨
(φ

1
∧
φ
3
)
→

φ
1
∧
(φ

2
∨
φ
3
)
→

I2



1.4. NORMAL FORMS OF FORMULAS 29

7.

[φ
1
∨
(φ

2
∧
φ
3
)]
2

[φ
1
]1

φ
1
∨
φ
2
∨I

1
[φ

1
]1

φ
1
∨
φ
3
∨I

1

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)
∧I

[φ
2
∧
φ
3
]1

φ
2

∧E
1

φ
1
∨
φ
2
∨I

2

[φ
2
∧
φ
3
]1

φ
3

∧E
2

φ
1
∨
φ
3
∨I

2

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)

∧I

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)

∨E
1

φ
1
∨
(φ

2
∧
φ
3
)
→

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)
→

I2

F
or

th
e
se
co
n
d
d
er
iv
at
io
n
w
e
fi
rs
t
gi
ve

a
d
er
iv
at
io
n
(φ

1
∨
φ
2
)
∧
(φ

1
∨
φ
3
),
φ
3
⊢
φ
1
∨
(φ

2
∧
φ
3
).

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)

φ
1
∨
φ
2

∧E
1

[φ
1
]1

φ
1
∨
(φ

2
∧
φ
3
)
∨I

1

[φ
2
]1

φ
3

φ
2
∧
φ
3

∧I
φ
1
∨
(φ

2
∧
φ
3
)
∨I

2

φ
1
∨
(φ

2
∧
φ
3
)

∨E
1

U
si
n
g
th
e
re
su
lt
ab

ov
e
w
e
ge
t
th
e
fo
ll
ow

in
g.

[(
φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)]
2

φ
1
∨
φ
3

∧E
2

[φ
1
]1

φ
1
∨
(φ

2
∧
φ
3
)
∨I

1

[(
φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)]
2

[φ
3
]1

. . . .
φ
1
∨
(φ

2
∧
φ
3
)

φ
1
∨
(φ

2
∧
φ
3
)

∨E
1

(φ
1
∨
φ
2
)
∧
(φ

1
∨
φ
3
)
→

φ
1
∨
(φ

2
∧
φ
3
)
→

I2



30 CHAPTER 1. PROPOSITIONAL LOGIC

This completes the proof. �
The next step is to formally define the two notions of normal forms of

formulas.

Definition 23 Let l11, . . . , lmnm be literals, i.e., each lij is either a proposi-
tional variable p or its negation ¬p.

1. A formula is in conjunctive normal form (cnf) iff it is a conjunction
of disjunctions of literals, i.e., it is of the form

(l11 ∨ · · · ∨ l1n1) ∧ · · · ∧ (lm1 ∨ · · · ∨ lmnm).

2. A formula is in disjunctive normal form (dnf) iff it is a disjunction of
conjunctions of literals, i.e., it is of the form

(l11 ∧ · · · ∧ l1n1) ∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm).

The following lemma guarantees the existence of both normal forms. No-
tice that those normal forms are not unique.

Lemma 24 Let φ ∈ Prop be a formula. Then there is a formula φc (φd) in
conjunctive (disjunctive) normal form equivalent to φ.

Proof. The proof is left as an exercise. �
The following lemma shows our intuitive argument in the example at the

beginning of this section.

Lemma 25 1. A disjunction l1 ∨ · · · ∨ ln of literals is valid iff there is
a propositional variable p so that li = p and lj = ¬p for some i, j ∈
{1, . . . , n}.

2. A conjunction l1 ∧ · · · ∧ ln of literals is satisfiable iff it not contains a
pair li = p and lj = ¬p for some propositional variable p and i, j ∈
{1, . . . , n}.

Proof.



1.4. NORMAL FORMS OF FORMULAS 31

1. Assume li = p and lj = ¬p. In this case the formula l1 ∨ · · · ∨ ln
evaluates to T for all truth assignments. For the converse implication
assume that there is no pair i, j so that li = p and lj = ¬p. Then
choose a truth assignment satisfying

v(p) =

{
F iff li = p for some i ∈ {1, . . . , n}
T iff li = ¬p for some i ∈ {1, . . . , n}

This is possible since both cases are exclusive. We get v̄(l1∨· · ·∨ln) = F,
and, hence, l1 ∨ · · · ∨ ln is not valid.

2. This follows immediately from 1. using Lemma 5. �

This leads immediately to the following corollary.

Corollary 26 1. A formula (l11 ∨ · · · ∨ l1n1) ∧ · · · ∧ (lm1 ∨ · · · ∨ lmnm) in
cnf is valid iff each disjunction li1 ∨ · · · ∨ lini

(i ∈ {1 . . .m}) contains
a pair lixi

, liyi with lixi
= p and liyi = ¬p for some xi, yi ∈ {1, . . . , ni}

and propositional variable p.

2. A formula (l11 ∧ · · · ∧ l1n1)∨ · · · ∨ (lm1 ∧ · · · ∧ lmnm) in dnf is satisfiable
iff each conjunction li1 ∧ · · · ∧ lini

(i ∈ {1 . . .m}) does not contain a
pair lixi

, liyi with lixi
= p and liyi = ¬p for some xi, yi ∈ {1, . . . , ni} and

propositional variable p.



32 CHAPTER 1. PROPOSITIONAL LOGIC



Chapter 2

First-Order Logic

The language of propositional logic is quite restricted. Cross references be-
tween individuals in a statement are usually out of the scope of the language.
For example, the statement

’If a person has a sibling and that sibling has a child then the
person is an aunt or an uncle.’

can not be expressed since it refers to individual properties of persons. The
naive approach by using S ∧ C → A with the following interpretation

1. S: a person has a sibling.

2. C: a sibling has a child.

3. A: a person is an aunt or an uncle.

does not work since the person in the first and last proposition, as well as
the sibling in the first and the second proposition, are not related in that
formula. S ∧ C → A just reads as:

’If a person has a sibling and a sibling has a child then a person
is an aunt or an uncle.’

First-order logic is built to handle statements as the one above. For
example, that statement could be rewritten (a little bit more formally) as:

’If x is person and has a sibling y and y has a child then x is an
aunt or an uncle.’

33



34 CHAPTER 2. FIRST-ORDER LOGIC

Notice that we just made the cross references in the sentences more obvi-
ous. Using a similar interpretation as introduced above we may use S(x, y)∧
C(y) → A(x) as a representation. Notice that this also enables us to intro-
duce quantifications, i.e., we can talk about all x and some y.

2.1 Syntax

In order to provide a suitable language we need more than just propositional
variables. For first-order logic we require the following components.

1. X a set of variables.

2. F a set of function symbols. Each symbol has its arity.

3. P a set of predicate symbols. Each symbol has its arity.

0-ary functions symbols are called constant symbols. Such a symbol cor-
responds to a function requiring no parameter at all, i.e., the function can
be identified with the element it returns. Similar the propositional variable
of propositional logic can be identified with 0-ary predicate symbols so that
first-order logic becomes a extension of propositional logic.

Definition 27 The set Term of terms is recursively defined by the following.

1. Each variable x ∈ X is a term, i.e., X ⊆ Term.

2. If f ∈ F is an n-ary function symbol and t1, . . . , tn ∈ Term are terms,
then f(t1, . . . , tn) ∈ Term.

Examples of terms are f(x, y, z) or f(f(x, x, x), f(y, y, y), z) assuming
that f is a ternary function symbol and x, y, z are variables.

Definition 28 The set FOL of first-order formulas (or formulas) is recur-
sively defined by the following.

1. If p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ Term are terms,
then p(t1, . . . , tn) ∈ FOL. Formulas of this kind are called atomic for-
mulas.

2. ⊥ is a formula, i.e, ⊥ ∈ FOL.



2.1. SYNTAX 35

3. If φ ∈ FOL then ¬φ ∈ FOL.

4. If φ1, φ2 ∈ FOL then

(a) φ1 ∧ φ2 ∈ FOL and

(b) φ1 ∨ φ2 ∈ FOL and

(c) φ1 → φ2 ∈ FOL.

5. If φ ∈ FOL and x ∈ X then

(a) ∀x:φ ∈ FOL and

(b) ∃x:φ ∈ FOL.

Notice that propositional formulas are first-order formulas, i.e, we have
Prop ⊆ FOL. The precedence of ∀ and ∃ is the same as ¬.

In the case of binary function and predicate symbols we will also use infix
notation. For example, instead of writing +(x, y) and ≤ (x, y) we use x + y
and x ≤ y.

Example 29 In this example we want to express some properties of the nat-
ural numbers in first-order logic. For this purpose we assume that 1 is a
constant symbol (0-ary function symbol), s a unary function symbol, and =
a binary predicate symbol. With the interpretation in mind that 1 denotes
the number one, s is the successor function, and = denotes equality we may
state the following formulas:

∀x:∀y:(s(x) = s(y) → x = y)

∀x:(¬(x = 1) → ∃y:x = s(y)).

Notice that we cannot express the principle of induction since it quantifies
over all properties. Such a statement is covered by second-order logic.

We adapt the usual conventions for some negated atomic formulas. For
example, instead of writing ¬(x = y) and ¬(x ≤ y) we use x ̸= y and x ̸≤ y.
In addition, we will group quantifications, i.e., we write ∀x, y, z:φ instead of
∀x:∀y:∀z:φ.

Definition 30 An occurrence of a variable x ∈ X in a formula is called
bounded iff it is in a subformula of the form ∀x:φ or ∃x:φ. An occurrence is
called free iff it is not bounded.



36 CHAPTER 2. FIRST-ORDER LOGIC

Consider the formula

∀x:P (x) ∧ ∃y:Q(x, y).

The occurrence of x in P (x) and the occurrence of y are bounded. The
second occurrence of x in Q(x, y) is free. Another example is

∀y:(y|x ∧ y ̸= 1 → x = y).

Here all occurrences of y are bounded, and all occurrences of x are free. With
the standard interpretation the formula above expresses that x is prime.

Since variables are place holders we need some means to replace them
with a concrete object. For example, we may want to replace x in the last
formula by the constant symbol 2 in order to state that 2 is prime. In general
we want to replace a variable by a term. Unfortunately, we have to be careful
because of some undesired side effects of that operation. If we replace x by
y in the last example we get

∀y:(y|y ∧ y ̸= 1 → y = y).

This formula does not stand for ’y is prime’. The problem is that the term
we going to substitute contains a variable y, and that a free occurrence of
x is under the scope of ∀y: or ∃y:. The variable is free so that any variable
contained in the term we are going to substitute should also be free.

Definition 31 Let x ∈ X be a variable, and φ ∈ FOL be a formula. A
t ∈ Term is called free for x in φ iff no free occurrence of x is in a subformula
∀y:φ′ or ∃y:φ′ for a variable y occurring in t.

Now we are ready to introduce the notion of substitution.

Definition 32 Let x ∈ X be a variable, t, t′ ∈ Term be terms, and φ ∈ FOL
be a formula.

1. By t′[t/x] we denote the result of replacing all occurences of x in t′ by
t.

2. If t is free for x in φ, then we denote by φ[t/x] the result of replacing
any free occurrence of x in φ by t.

If we write φ[t/x] we always assume that t is free for x. Later we will see
that this can always be achieved by renaming bounded variables.



2.2. SEMANTICS 37

2.2 Semantics

Since we are now able to talk about individuals or elements the simple uni-
verse of truth values is not rich enough to provide a suitable interpretation
of the entities of the language.

Definition 33 Let F be a set of function symbols, and P be a set of predicate
symbols. A model M consists of the following data:

1. |M| a non-empty set, called the universe.

2. For each function symbol f ∈ F with arity n a n-ary function fM :
|M|n → |M|.

3. For each predicate symbol p ∈ P with arity n a subset pM ⊆ |M|n.

Notice that constant symbols are interpreted by elements. Furthermore,
0-ary predicate symbols are mapped to subsets of |M|0, which is a set con-
taining just one element by definition. This set has exactly two subsets, the
empty set and itself, modelling F and T , respectively.

Similar to a truth assignment we need values for the free variables in
order to define the semantics of terms and formulas.

Definition 34 Let M be a model. An environment σ : X → |M| is a
function from the set of variables X to the universe of the model. For an
environment σ, a variable x, and a value a ∈ |M| denote by σ[a/x] the
environment defined by

σ[a/x](y) =

{
a iff x = y,
σ(y) iff x ̸= y.

We start with the interpretation of the term. Naturally, a term should
denote an element so that the interpretation of a term is an element of the
universe.

Definition 35 Let M be a model, and σ be an environment. The extension
σ̄ : Term → |M| of σ is defined by:

1. σ̄(x) = σ(x) for every x ∈ X.

2. σ̄(f(t1, . . . , tn)) = fM(σ̄(t1), . . . , σ̄(tn)).



38 CHAPTER 2. FIRST-ORDER LOGIC

The next step is to define the validity of formulas.

Definition 36 Let M be a model, and σ be an environment. The satisfac-
tion relation |=M φ[σ] is recursively defined by:

1. |=M p(t1, . . . , tn)[σ] iff (σ̄(t1), . . . , σ̄(tn)) ∈ pM.

2. ̸|=M ⊥[σ], i.e., not |=M ⊥[σ].

3. |=M ¬φ[σ] iff ̸|=M φ[σ].

4. |=M φ1 ∧ φ2[σ] iff |=M φ1[σ] and |=M φ2[σ].

5. |=M φ1 ∨ φ2[σ] iff |=M φ1[σ] or |=M φ2[σ].

6. |=M φ1 → φ2[σ] iff |=M φ2[σ] whenever |=M φ1[σ].

7. |=M ∀x:φ[σ] iff |=M φ[σ[a/x]] for all a ∈ |M|.

8. |=M ∃x:φ[σ] iff |=M φ[σ[a/x]] for some a ∈ |M|.

Compare the definition above to the Definition 3. Restricted to proposi-
tional logic, a model correspond to a truth assignment and vice versa.

Definition 37 Let Σ be a set of formulas, and φ be a formula.

1. φ is called valid in the model M (|=M φ) iff |=M φ[σ] for all environ-
ments σ.

2. φ is called valid (|= φ) iff |=M φ for all models M.

3. φ is called satisfiable iff there is a model M and an environment so
that |=M φ[σ].

4. φ follows from Σ in M (Σ |=M φ) iff for all environments σ, whenever
|=M ψ[σ] for all ψ ∈ Σ, then |=M φ[σ].

5. φ follows from Σ (Σ |= φ) iff Σ |=M φ for all models M.

If a formula φ or a set of formulas Σ is valid in a model M we will call
M a model of φ or Σ, respectively.

Let us consider an example.



2.2. SEMANTICS 39

Example 38 Consider the language and the formulas of Example 29 again.
The first model is the set of natural number N and the obvious interpretation
of the function, constant and predicate symbols, e.g., sN(x) = x + 1. In this
case both formulas are valid. The first formula ∀x:∀y:(s(x) = s(y) → x = y)
simply says that successor is injective, and the second formula ∀x:(¬(x =
1) → ∃y:x = s(y)) says that every element except 1 has a predecessor.

Now, we want to consider several different models. In all cases we will
interpret the symbol = by equality. First, consider the model A with universe
{1A}. The function symbol s is interpreted by the identity function. This
model can be visualized by the following graph:

1A

sA





The identity function is injective and all elements have a predecessor so
that both formulas are again satisfied.

For the second model consider again the natural numbers. This time we
interpret s by the function n 7→ 2n. This function is injective but all odd
numbers are not in the image of that function.

Last but not least, consider the models B and C given by the graphs

1B sB // b

sB

��
1C sC // c1

sC

��

c0
sC

>>}}}}}}}}

Here sB is not injective but every elements except 1 has a predecessor. In
the model C both formulas are not true.

As in propositional logic we have the obvious relationship between satis-
fiability and validity.

Lemma 39 Let φ ∈ FOL be a formula. Then φ is satisfiable iff ¬φ is not
valid.

Proof. ⇒: Assume φ is satisfiable. Then there is a model M and an
environment σ with |=M φ[σ]. We conclude ̸|=M ¬φ[σ], and, hence, ¬φ is
not valid.

⇐: If ¬φ is not valid then there is a model M and an environment σ
with ̸|=M ¬φ[σ]. We conclude |=M φ[σ], and, hence, φ is satisfiable. �



40 CHAPTER 2. FIRST-ORDER LOGIC

Similar to propositional logic we are just interested in variables that occur
free.

Lemma 40 Let t ∈ Term be a term, φ ∈ FOL be a formula, and M be a
model.

1. If the environments σ1 and σ2 coincide on all variables of t, then σ̄1(t) =
σ̄2(t).

2. If the environments σ1 and σ2 coincide on all free variables of φ, then
|=M φ[σ1] iff |=M φ[σ2].

Proof. Both proofs are done by induction.

1. If t = x is a variable we get

σ̄1(t) = σ1(x) = σ2(x) = σ̄2(t).

If t is of the form f(t1, . . . , tn) with a n-ary function symbol f and
terms t1, . . . , tn we conclude

σ̄1(t) = fM(σ̄1(t1), . . . , σ̄1(tn))

= fM(σ̄2(t1), . . . , σ̄2(tn)) by the induction hypothesis

= σ̄2(t).

2. If φ = p(t1, . . . , tn) is an atomic formula then every variable in each
term is free in φ so that we conclude σ̄1(ti) = σ̄2(ti) for i ∈ {1, . . . , n}
using 1., which immediately implies the assertion.

The case φ is one of the formulas ⊥, ¬φ′, φ1 ∧ φ2, φ1 ∨ φ2 or φ1 → φ2

are straight forward applications of the induction hypothesis.

Assume φ = Qx:φ′ with Q ∈ {∀,∃}. The free variables of φ′ are the
free variables of φ and the variable x. Consequently, the environments
σ1[a/x] and σ2[a/x] for an arbitrary a ∈ |M| coincide on all free vari-
ables in φ′. We conclude

|=M φ[σ1] ⇔|=M φ′[σ1[a/x]] for all/some a ∈ |M|
⇔|=M φ′[σ2[a/x]] for all/some a ∈ |M|
⇔|=M φ[σ2],

where the second equivalence is an application of the induction hypoth-
esis. �



2.2. SEMANTICS 41

The next lemma relates the two notion of substitution and updating an
environment. First we want to illustrate it by an example.

Example 41 Consider again the formula ∀y:(y|x∧y ̸= 1 → x = y) using in
the standard model N of the natural numbers, i.e., this formula states that x
is prime. Now, consider the term 2+3. On the one hand we could substitute
2 + 3 for x in the formula, giving ∀y:(y|(2 + 3) ∧ y ̸= 1 → 2 + 3 = y),
and check its validity for a given environment σ. The formula is true for
any environment since it does not contain any free variable. On the other
hand, we could first compute the value σ̄(2 + 3) = 5 (in order to distinguish
terms and natural numbers we use bold symbols for numbers). This time we
compute the validity of the original formula with the environment σ[5/x].
Once again this result in true.

Lemma 42 Let x ∈ X be a variable, t, t′ ∈ Term be terms, φ ∈ FOL be a
formula, and M be a model.

1. σ̄(t′[t/x]) = σ[σ̄(t)/x](t′).

2. |=M φ[t/x][σ] iff |=M φ[σ[σ̄(t)/x]].

Proof. Both assertions are shown by induction.

1. If t′ = y we distinguish two cases. If x = y we get

σ̄(t′[t/x]) = σ̄(t) = σ[σ̄(t)/x](x) = σ[σ̄(t)/x](t′).

If x ̸= y the environments σ and σ[σ̄(t)/x] coincide on all variables in
t′. We use Lemma 40(1) and conclude

σ̄(t′[t/x]) = σ̄(y) = σ[σ̄(t)/x](y) = σ[σ̄(t)/x](t′).

If t′ = f(t1, . . . , tn) we immediately get

σ̄(t′[t/x])

= fM(σ̄(t1[t/x]), . . . , σ̄(tn[t/x])) substitution

= fM(σ[σ̄(t)/x](t1), . . . , σ[σ̄(t)/x](tn)) induction hypothesis

= σ[σ̄(t)/x](t′)



42 CHAPTER 2. FIRST-ORDER LOGIC

2. If φ = p(t1, . . . , tn) we conclude

|=M φ[t/x][σ]

⇔|=M p(t1[t/x], . . . , tn[t/x])[σ] substitution

⇔ (σ̄(t1[t/x]), . . . , σ̄(tn[t/x])) ∈ pM

⇔ (σ[σ̄(t)/x](t1), . . . , σ[σ̄(t)/x](tn)) ∈ pM 1.

⇔|=M p(t1, . . . , tn)[σ[σ̄(t)/x]]

⇔|=M φ[σ[σ̄(t)/x]].

The case φ is one of the formulas ⊥, ¬φ′, φ1 ∧ φ2, φ1 ∨ φ2 or φ1 → φ2

are straight forward applications of the induction hypothesis.

Assume φ = Qy:φ′ with Q ∈ {∀, ∃}. In the case x = y the variable x
does not occur free in φ so that φ[t/x] = φ. By Lemma 40(2) we get
|=M φ[σ] iff |=M φ[σ[σ̄(t)/x], and, hence, the assertion. Assume x ̸= y.
Then we conclude

|=M φ[t/x][σ] ⇔|=M Qy:φ′[t/x][σ]

⇔|=M φ′[t/x][σ[a/y]] for all/some a ∈ |M|
⇔|=M φ′[σ[a/y][σ[a/y](t)/x]] for all/some a ∈ |M|
⇔|=M φ′[σ[a/y][σ̄(t)/x]] for all/some a ∈ |M|

by Lemma 40(2) since t

is free for x in Qy:φ

⇔|=M φ′[σ[σ̄(t)/x][a/y]] for all/some a ∈ |M|
since x ̸= y

⇔|=M Qy:φ′[σ[σ̄(t)/x]]

⇔|=M φ[σ[σ̄(t)/x]],

where the third equivalence is an application of the induction hypoth-
esis. �

2.3 Natural Deduction

We extend natural deduction for propositional logic by new rules for the new
constructions, i.e., universal and existential quantification. Again, we will



2.3. NATURAL DEDUCTION 43

have introduction and elimination rules in both cases. We want to discuss
the rules in detail.

For all elimination: If we know that ∀x:φ is true, then it is legal to con-
clude that φ for x being an arbitrary element. In other terms, we are
allowed to conclude that φ[t/x] is true for an arbitrary term t.

∀x:φ
φ[t/x]

∀E

For all introduction: In order to show that a formula ∀x:φ is true one may
simply show φ, i.e., we simply assume that x is an arbitrary element.
For this being legal we must assure that the variable x is not already
used elsewhere (as a free variable), i.e., that it is a ’fresh/new’ variable.
We get the rule

φ

∀x:φ ∀I
if x does not occur free in any
premises of this subtree

This rule has condition, which has to be satisfied before we are allowed
to apply this rule. Notice that this condition refers to the premises of
the subtree, i.e., just to those assumptions that are not yet discarded.

Exists introduction: This rule is very simple. If we were able to derive
φ[t/x] we have already got a witness t of the existential version of the
formula. The rule simply is

φ[t/x]

∃x:φ ∃I

Exists elimination: To understand this rule it is helpful to consider the
case of a finite model, i.e., a model {a1, . . . , an}. In this case an exis-
tential formula ∃x:φ is true if it is true for one of the elements a1, . . . , an.
Assume that the terms t1, . . . , tn denote the elements, i.e., σ̄(ti) = ai,
then ∃x:φ is true if φ[t1/x]∨ · · ·∨φ[tn/x] is true. Consequently, we get
a rule similar to ∨ elimination. The formula χ must be independent of
x, and x be local to that subtree motivating the variable condition of
this rule.

∃x:φ

[φ]
....
χ

χ ∃E
if x does not occur free in χ and in any
premises of the right subtree accept φ



44 CHAPTER 2. FIRST-ORDER LOGIC

As in the case of ∀I the variable condition refers to the premises of the
right subtree, i.e., just to those assumptions that are not yet discarded.

As a first example we want to verify that bounded variables can be re-
named.

Lemma 43 Let φ ∈ FOL be a formula not containing a free occurrence of
the variable y. The we have

1. ⊢ ∀x:φ↔ ∀y:φ[y/x].

2. ⊢ ∃x:φ↔ ∃y:φ[y/x].

Proof. In both cases it is sufficient to show ’→’. The other implication is
similar.

1.
[∀x:φ]1

φ[y/x]
∀E

∀y:φ[y/x] ∀I

∀x:φ→ ∀y:φ[y/x] → I1

Notice that the variable condition of ∀I is satisfied since φ, and, hence,
∀x:φ does not contain a free occurrence of y.

2.

[∃x:φ]2
[φ]1

∃y:φ[y/x] ∃I

∃y:φ[y/x] ∃E1

∃x:φ→ ∃y:φ[y/x] → I2

Notice that the ∃I is of the required form since φ[y/x][x/y] is just φ
(recall y does not occur free in φ). Furthermore, the variable condition
of ∃E is satisfied since x does not occur free in ∃y:φ[y/x]. It occurs free
in φ, which does not violate the condition.

This completes the proof. �
We will provide further derivation when we consider normal forms of

formulas in first-order logic.

Theorem 44 (Soundness) Let φ1, . . . , φn and ψ be formulas. If φ1, . . . , φn ⊢
ψ, then φ1, . . . , φn |= ψ holds.



2.3. NATURAL DEDUCTION 45

Proof. The proof is done by induction on the derivation φ1, . . . , φn ⊢ ψ.
The base case and the case corresponding to the introduction and elimina-
tion rules of ¬,∧,∨ and → are similar to those in propositional logic, and,
therefore, omitted. The remaining cases are:

∀I : In this case ψ = ∀x:ψ′, and we have a derivation φ1, . . . , φn ⊢ ψ′.
The variable condition implies that x does not occur free in any of
φ1, . . . , φn. AssumeM is a model and σ an environment with |=M φi[σ]
for i ∈ {1, . . . , n}. By Lemma 40(2) we have |=M φi[σ[a/x]] for all
a ∈ |M| and i ∈ {1, . . . , n}. By the induction hypothesis we conclude
|=M ψ′[σ[a/x]] for all a ∈ |M|, and, hence, |=M ψ[σ].

∀E : In this case ψ = ψ′[t/x], and we have a derivation φ1, . . . , φn ⊢ ∀x:ψ′.
Assume M is a model and σ an environment with |=M φi[σ] for i ∈
{1, . . . , n}. By the induction hypothesis we conclude |=M ∀x:ψ′[σ],
and, in particular, |=M ψ′[σ[σ̄(t)/x]]. From Lemma 42(2) we get |=M
ψ′[t/x][σ].

∃I : In this case ψ = ∃x:ψ′, and we have a derivation φ1, . . . , φn ⊢ ψ′[t/x].
Assume M is a model and σ an environment with |=M φi[σ] for i ∈
{1, . . . , n}. By the induction hypothesis we conclude |=M ψ′[t/x][σ].
Lemma 42(2) implies |=M ψ′[σ[σ̄(t)/x]], and, hence, |=M ψ[σ].

∃E : In this case we have derivations φ1, . . . , φn ⊢ ∃x:ψ′ and Σ, ψ′ ⊢ ψ with
Σ ⊆ {φ1, . . . , φn}. The variable condition implies that x does not
occur free in ψ and in any formula of Σ. Assume M is a model and
σ an environment with |=M φi[σ] for i ∈ {1, . . . , n}. By the induction
hypothesis we get |=M ∃x:ψ′[σ]. We conclude that there is an a ∈ |M|
with |=M ψ′[σ[a/x]]. Since x does not occur free in the formulas in
Σ we get |=M φ[σ[a/x]] for all φ ∈ Σ by Lemma 42(2). From the
induction hypothesis we derive |=M ψ[σ[a/x]]. Again by Lemma 42(2)
we conclude |=M ψ[σ] since x does not occur free in ψ. �

First-order languages quite often include a predicate symbol for equality
=. The main difference between the symbol = and other predicate symbols is
that = usually has a predefined interpretation, i.e., =M= {(a, a) | a ∈ |M|}
for all models. We refer to this variant as first-order logic with equality. An
extended version of natural deduction provides an introduction and elimina-



46 CHAPTER 2. FIRST-ORDER LOGIC

tion rule for =:

t = t =I
t1 = t2 φ[t1/x]

φ[t2/x]
=E

Notice that =I does not have an assumption, i.e., this rule is actually an
axiom.

Our next goal is to show completeness of the calculus. First, we want to
get rid of premises in a proof.

Lemma 45 Let φ1, . . . , φn and ψ be formulas. Then we have:

1. φ1, . . . , φn |= ψ iff |= φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))).

2. φ1, . . . , φn ⊢ ψ iff ⊢ φ1 → (φ2 → (φ3 → (. . . (φn → ψ) . . .))).

Proof. Similar to Lemma 14. �
The next step is to take care about the free variables in a formula.

Lemma 46 Let φ ∈ FOL be a formula. Then

1. |=M φ iff |=M ∀x:φ.

2. |= φ iff |= ∀x:φ.

3. ⊢ φ iff ⊢ ∀x:φ.

Proof.

1. ⇒: Let σ be an arbitrary environment. By the assumption we have
|=M φ[σ[a/x]] for all a ∈ |M|, and, hence, |=M ∀x:φ[σ].
⇐: Let σ be an arbitrary environment. Then σ = σ[σ(x)/x]. By the
assumption we have |=M ∀x:φ[σ], and, hence, |=M φ[σ[σ(x)/x]]. We
conclude |=M φ[σ].

2. This follows immediately from (1).

3. ⇒: To the derivation ⊢ φ we apply the rule ∀I to get a derivation
⊢ ∀x:φ. The variable condition is satisfied since the derivation has no
premises.

⇐: This follows by applying the rule ∀E. �



2.3. NATURAL DEDUCTION 47

A formula that does not contain any free occurrence of a variable is called
closed. Since every formula just contains finitely many free variables we may
close a formula by adding universal quantifiers. e.g., if φ is a formula and
has free variables x1, . . . , xn then ∀x1, . . . , xn:φ is a closed formula. We will
denote this formula by ∀φ and call it the closure of φ.

Lemma 47 The following statements are equivalent:

1. The calculus of natural deduction is complete, i.e., φ1, . . . , φn |= ψ
implies φ1, . . . , φn ⊢ ψ for all formulas φ1, . . . , φn and ψ.

2. |= φ implies ⊢ φ for all closed formulas φ.

Proof.

1.⇒ 2.: This implication is trivial.

2.⇒ 1.: Assume φ1, . . . , φn |= ψ and let φ = φ1 → (φ2 → (φ3 → (. . . (φn →
ψ) . . .))). By Lemma 45(1) we have |= φ. Now, we apply Lemma
46(2) as often as we have free variables to conclude |= ∀φ. (2) implies
⊢ ∀φ, and, hence ⊢ φ using Lemma 46(3). Finally, Lemma 45(2) shows
φ1, . . . , φn ⊢ ψ. �

We are going to prove (2) instead of (1).

Definition 48 A set of closed formulas T is called a theory. A theory is
called consistent iff T ̸⊢ ⊥. It is called inconsistent iff it is not consistent,
i.e., if T ⊢ ⊥.

In the next lemma we want to relate derivations with the consistency of
a theory.

Lemma 49 Let T be a theory, and φ be a closed formula. Then T ⊢ φ iff
T ∪ {¬φ} is inconsistent.

Proof. ⇒: Using ¬φ and ¬E we get a derivation T ∪ {¬φ} ⊢ ⊥, i.e.,
T ∪ {¬φ} is inconsistent.

⇐: This time we have a derivation T ∪ {¬φ} ⊢ ⊥. Using the rule PBC
we get a derivation T ⊢ φ. �

In the next lemma we provide the version of the completeness theorem
we going to prove. Notice that (1) actually implies completeness.



48 CHAPTER 2. FIRST-ORDER LOGIC

Lemma 50 The following statements are equivalent:

1. T |= φ implies T ⊢ φ for all closed formulas φ and theories T .

2. Every consistent theory has a model.

Proof.

1.⇒ 2.: If T is consistent, i.e., T ̸⊢ ⊥, then we have T ̸|= ⊥ by (1). This
implies that there is a model M so that |=M ψ for all ψ ∈ T and
̸|=M ⊥. Consequently, M is a model of T .

2.⇒ 1.: Assume T ̸⊢ φ. Then we have to show that T ̸|= φ. By Lemma 49
the theory T ∪{¬φ} is consistent. From (2) we conclude that T ∪{¬φ}
has a model M, i.e., |=M ψ for all ψ ∈ T and ̸|=M φ, i.e., T ̸|= φ. �

In the following we are going to prove 50(2). Our proof will be for the
variant first-order logic with equality. Regular first-order logic is just a special
case, of course.

We are facing the problem that we have to construct a model for a given
theory. The key idea is to basically use the syntactic material itself, i.e., the
universe is formed by the variable-free (or closed) terms.

Lemma 51 Let T be a theory. The relation ∼ on closed terms defined by
t1 ∼ t2 iff T ⊢ t1 = t2 is an equivalence relation with t1 ∼ t′1, . . . , tn ∼ t′n
implies

1. f(t1, . . . , tn) ∼ f(t′1, . . . , t
′
n) for all n-ary function symbols, and

2. T ⊢ p(t1, . . . , tn) iff T ⊢ p(t′1, . . . , t′n) for all n-ary predicate symbols p.

Proof. The axiom =I shows that ∼ is reflexive. Assume t1 ∼ t2 and t2 ∼ t3.
Then there are derivations T ⊢ t1 = t2 and T ⊢ t2 = t3. We get

....
t2 = t3

....
t1 = t2

t1 = t3
=E

and, hence, t1 ∼ t3, i.e., ∼ is transitive. Notice that the formula φ of the rule
=E is t1 = x in the example above. Assume t1 ∼ t2, i.e., there is a derivation
T ⊢ t1 = t2. We get

....
t1 = t2 t1 = t1

=I

t2 = t1
=E



2.3. NATURAL DEDUCTION 49

and, hence, t2 ∼ t1, i.e., ∼ is symmetric (This time we have used φ is x = t1.
Now, assume t1 ∼ t′1, . . . , tn ∼ t′n, i.e., there are derivations T ⊢ t1 =

t′1, . . . , T ⊢ tn = t′n. We get

....
t1 = t′1 f(t1, t2, . . . , tn) = f(t1, t2, . . . , tn)

=I

f(t1, t2, . . . , tn) = f(t′1, t2, . . . , tn)
=E

n − 1 additional applications of the rule =E shows T ⊢ f(t1, . . . , tn) =
f(t′1, . . . , t

′
n). Property (2) is shown analogously. �

Due to the last lemma the following structure is well-defined.

Definition 52 Let T be a theory. Then the Henkin-model H of T is defined
by

1. |H| := {[t] | t ∈ Term and t is closed}, where [t] denotes the equiva-
lence class of the term t with respect to ∼.

2. fH([t1], . . . , [tn]) := [f(t1, . . . , tn)].

3. ([t1], . . . , [tn]) ∈ pH iff T ⊢ p(t1, . . . , tn).

Notice that in the Henkin-model we have σ̄(t) = [t] for all closed terms t
(independent of σ).

Unfortunately, the model above is not necessarily a model of the theory.
It might not even be a model because it is possible that the language does
not have any closed terms. But if the theory (and the language) is sufficiently
strong enough the Henkin-model is indeed a model of the theory.

Definition 53 A theory T is called

1. complete iff T ⊢ φ or T ⊢ ¬φ for all closed formulas φ.

2. a Henkin-theory iff for every closed formula ∃x:φ there is a constant
symbol c so that T ⊢ ∃x:φ→ φ[c/x].

As promised earlier we have the following lemma.

Lemma 54 If T is consistent and a complete Henkin-theory then H is a
model of T .



50 CHAPTER 2. FIRST-ORDER LOGIC

Proof. First of all, the universe is not empty since there is a constant c with
T ⊢ ∃x:x = x→ c = c because T is a Henkin-theory.

In order to show the property φ ∈ T implies |=H φ we are going to prove
a stronger property. We are going to show

(*) |=H φ[σ[[t1]/x1] . . . [[tn]/xn]] ⇐⇒ T ⊢ φ[t1/x1] . . . [tn/xn]

for all formulas φ with free variables x1, . . . , xn, closed terms t1, . . . , tn and
environments σ. In the proof we are going to use the abbreviations

−→
t for (t1, . . . , tn),

−→
t/x for [t1/x1] . . . [tn/xn]

and, similarly,
−→
[t],

−−→
[t]/x and

−−−−→
σ̄(t)/x. With those conventions (*) reads

|=H φ[σ
−−−→
[[t]/x]] ⇐⇒ T ⊢ φ

−−→
[t/x].

This is shown by induction.

φ = p(s1, . . . , sm): First of all, we have

σ
−−−→
[[t]/x](si) = σ

−−−−−→
[σ̄(t)/x](si)

= σ̄(si
−−→
[t/x]) Lemma 42(1)

= [si
−−→
[t/x]]

for i ∈ {1, . . . ,m}. We conclude

|=H p(s1, . . . , sm)[σ
−−−→
[[t]/x]]

⇔ (σ
−−−→
[[t]/x](s1)), . . . , σ

−−−→
[[t]/x](si)) ∈ pH

⇔ ([s1
−−→
[t/x]], . . . , [sm

−−→
[t/x]]) ∈ pH above

⇔ T ⊢ p(s1
−−→
[t/x], . . . , sm

−−→
[t/x])

⇔ T ⊢ p(s1, . . . , sm)
−−→
[t/x].

φ = ⊥: In this case we have ̸|=H ⊥ and T ̸⊢ ⊥ since T is consistent.



2.3. NATURAL DEDUCTION 51

φ = ¬φ′: We immediately conclude

|=H ¬φ′[σ
−−−→
[[t]/x]] ⇎|=H φ′[σ

−−−→
[[t]/x]]

⇔ T ̸⊢ φ′−−→[t/x] induction hypothesis

⇔ T ⊢ (¬φ′)
−−→
[t/x]. T complete

φ = φ1 ∧ φ2: In this case we have

|=H φ1 ∧ φ2[σ
−−−→
[[t]/x]]

⇔|=H φ1[σ
−−−→
[[t]/x]] and |=H φ2[σ

−−−→
[[t]/x]]

⇔ T ⊢ φ1

−−→
[t/x] and T ⊢ φ2

−−→
[t/x] induction hypothesis

⇔ T ⊢ (φ1 ∧ φ2)
−−→
[t/x].

φ = φ1 ∨ φ2 and φ = φ1 → φ2: Similar to the previous case.

φ = ∃y:φ′: First of all, we have

|=H ∃y:φ′[σ
−−−→
[[t]/x]]

⇔|=H φ′[σ
−−−→
[[t]/x][[s]/y]] for some [s] ∈ |H|

⇔ T ⊢ φ′−−→[t/x][s/y]]. for some closed term s

by the induction hypothesis

It remains to show that the last property is equivalent to T ⊢ (∃y:φ′)
−−→
[t/x].

The implication ⇒ follows by using the rule ∃I. Conversely, assume

T ⊢ (∃y:φ′)
−−→
[t/x]. Since T is a Henkin-theory there is a constant c with

T ⊢ (∃y:φ′)
−−→
[t/x] → φ′−−→[t/x][c/y]. We conclude T ⊢ φ′−−→[t/x][c/y].

φ = ∀y:φ′: Similar to the previous case we get

|=H ∀y:φ′[σ
−−−→
[[t]/x]]

⇔|=H φ′[σ
−−−→
[[t]/x][[s]/y]] for all [s] ∈ |H|

⇔ T ⊢ φ′−−→[t/x][s/y]]. for all closed term s

by the induction hypothesis



52 CHAPTER 2. FIRST-ORDER LOGIC

and it remains to be shown that the last property is equivalent to

T ⊢ (∀y:φ′)
−−→
[t/x]. The implication ⇐ follows by using the rule ∀E.

Conversely, assume T ⊢ φ′−−→[t/x][s/y]] for all closed terms s. Since T

is a Henkin-theory we have T ⊢ (∃y:¬φ′)
−−→
[t/x] → (¬φ′)

−−→
[t/x][c/y] for a

constant symbol c. Let ψ denote φ′−−→[t/x] and consider the derivation

....
ψ[c/y]

....
∃y:¬ψ → ¬ψ[c/y] [∃y:¬ψ]1

¬ψ[c/y] →E

⊥ ¬E
¬∃y:¬ψ ¬I1

[¬ψ]2
∃y:¬ψ ∃I

⊥ ¬E
ψ PBC2

∀y:ψ ∀I

The variable condition at the application of ∀I is satisfied since all
premises of the subtree are elements of T , i.e., closed formulas. This
completes the proof. �

It remains to show that every consistent theory can be extended to a
consistent and complete Henkin-theory. First, we want to show that just
adding new constant symbols does not have any effect on the consistency of
a theory.

In order to distinguish different languages we denote by L(T ) the language
of T , i.e., L(T ) = (F, P ) with F the set of function symbols and P the set
of predicate symbols. We say that φ is a formula in the language L(T ) iff φ
just contains symbols from F and P .

Lemma 55 Let T be a theory, φ be a formula in the language L(T ), and C be
a set of constant symbol with F ∩C = ∅. Then we have for all c1, . . . , cn ∈ C
and variables x1, . . . , xn

T ⊢ φ ⇐⇒ T ⊢ φ[c1/x1] . . . [cn/xn].

Proof. ’⇒’: Assume we have T ⊢ φ. By using Lemma 46(3) n-times we
get a derivation T ⊢ ∀x1, . . . xn:φ. We conclude T ⊢ φ[c1/x1] . . . [cn/xn] by
applying the rule ∀E n-times.



2.3. NATURAL DEDUCTION 53

’⇐’: We are going to use a similar notion as in the proof of Lemma 54,
and we prove the following more general property for all formulas ψ1, . . . , ψm

and φ: Let c1, . . . , cn be the new constant symbols that occur in a deriva-

tion T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x]} ⊢ φ

−−→
[c/x]. Then there is a derivation T ∪

{ψ1, . . . , ψm} ⊢ φ. We are going to prove this property by induction on the
structure of the give derivation.

If the derivation is just an assumption, the formula φ
−−→
[c/x] is either in T

or equal to ψi

−−→
[c/x] for an i ∈ {1, . . . ,m}. In the first case the formula does

not contain any of the constant c since F ∩ C = ∅ so that φ
−−→
[c/x] is actually

equal to φ. In the later case we conclude that φ = ψi since both formulas do
not contain any of the new constant symbols. Consequently, φ = ψi is the
required derivation.

∧I: We have φ = φ1 ∧ φ2, and we have derivations

T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x]} ⊢ φ1

−−→
[c/x],

T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x]} ⊢ φ2

−−→
[c/x].

By the induction hypothesis we get derivations T ∪ {ψ1, . . . , ψm} ⊢ φ1

and T ∪ {ψ1, . . . , ψm} ⊢ φ2, which we combine using ∧I to a derivation
T ∪ {ψ1, . . . , ψm} ⊢ φ.

∧E1, ∧E2, ∨I1, ∨I2, →E, ¬E, ∀I, ∀E, ∃I are similar to the previous case.

∨E: In this case we have derivations

T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x]} ⊢ φ1 ∨ φ2,

T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x], φ1} ⊢ φ

−−→
[c/x],

T ∪ {ψ1

−−→
[c/x], . . . , ψm

−−→
[c/x], φ2} ⊢ φ

−−→
[c/x]

for some formulas φ1 and φ2 (in the extended language, i.e., they may

contain elements from C). Therefore, φ1 = φ′
1

−−→
[c/x] and φ1 = φ′

1

−−→
[c/x]

by the assumption on the new constant occurring in the derivation. By
the induction hypothesis we get derivations

T ∪ {ψ1, . . . , ψm ⊢ φ′
1 ∨ φ′

2,

T ∪ {ψ1, . . . , ψm, φ
′
1} ⊢ φ,

T ∪ {ψ1, . . . , ψm, φ
′
2} ⊢ φ,

which we combine using ∨E.



54 CHAPTER 2. FIRST-ORDER LOGIC

→I, ¬I, PBC, ∃E are similar to the previous case. �

In particular, the previous lemma implies that T is consistent iff T is
consistent with respect to language enriched by new constant symbols.

Definition 56 Let T be a theory in the language L(T ). We define the fol-
lowing languages and theories recursively:

1. L0 := L(T ) and T0 := T .

2. Let Cn+1 := {c∃x:φ | ∃x:φ a closed formula in the language Ln} be a set
of new constant symbols, i.e., Cn+1 ∩Fn = ∅. Then Ln+1 := Ln ∪Cn+1

and Tn+1 := Tn ∪ {∃x:φ→ φ[c∃x:φ/x] | c∃x:φ ∈ Cn+1}.

3. LH :=
∪
i≥0

Li, and TH :=
∪
i≥0

Ti.

Lemma 57 If T is a consistent theory, then TH is a consistent Henkin-
theory.

Proof. First, we show by induction that every Tn is consistent. For n = 0
this is trivial. Assume there is a derivation Tn+1 ⊢ ⊥. Then there are m
formulas ψi = ∃xi:φi → φi[ci/xi] with i ∈ {1, . . . ,m} so that the derivation
above is actually a derivation Tn ∪ {ψ1, . . . , ψm} ⊢ ⊥. We assume that the
variables x1, . . . , xm are different, otherwise we rename certain variables. By
Lemma 45(2) we get a derivation Tn ⊢ ψ1 → (ψ2 → . . . (ψm → ⊥) . . .).
Notice that ψi is of the form ψ′

i[ci/xi] with ψ′
i = ∃xi:φi → φi a formula in

the language Ln so that the previous statement can be written as Tn ⊢ ψ′
1 →

(ψ′
2 → . . . (ψ′

m → ⊥) . . .)[c1/x1] · · · [cn/xn]. Lemma 55 implies that there is
a derivation Tn ⊢ ψ′

1 → (ψ′
2 → . . . (ψ′

m → ⊥) . . .) in the language Ln, and,
hence, Tn ∪{ψ′

1, . . . , ψ
′
m} ⊢ ⊥ using Lemma 45(2) again. The following steps

are repeated m times:
By Lemma 45(2) we get a derivation Tn ∪ {ψ′

1, . . . , ψ
′
m−1} ⊢ ψ′

m → ⊥,
and by Lemma 46(3) Tn ∪ {ψ′

1, . . . , ψ
′
m−1} ⊢ ∀xm:(ψ′

m → ⊥). Consider
the derivation of ∃xm:ψ′

m, and the combination of that derivation and the
derivation above given in figure below. This shows that there is a derivation
Tn ∪ {ψ′

1, . . . , ψm−1} ⊢ ⊥.
After m repetition we end up with a derivation Tn ⊢ ⊥, a contradiction

to the induction hypothesis that Tn is consistent.



2.3. NATURAL DEDUCTION 55

L
em

m
a
15
(4
)

. . . .
∃x

m
:φ

m
∨
¬∃
x
m
:φ

m

[∃
x
m
:φ

m
]3

[φ
m
]1

∃x
m
:φ

m
→

φ
m

→
I

∃x
m
:(
∃x

m
:φ

m
→

φ
m
)
∃I

∃x
m
:(
∃x

m
:φ

m
→

φ
m
)

∃E
1

[¬
∃x

m
:φ

m
]3

[∃
x
m
:φ

m
]2

⊥
¬E

φ
m

P
B
C

∃x
m
:φ

m
→

φ
m

→
I2

∃x
m
:(
∃x

m
:φ

m
→

φ
m
)
∃I

∃x
m
:(
∃x

m
:φ

m
→

φ
m
)

∨E
3

ab
ov
e

. . . .
∃x

m
:ψ

′ m

T
n
∪
{ψ

′ 1
,.
..
,ψ

m
−
1
}

. . . .
∀x

m
:(
ψ

′ m
→

⊥
)

ψ
′ m
→

⊥
∀E

[ψ
′ m
]1

⊥
→

E

⊥
∃E

1



56 CHAPTER 2. FIRST-ORDER LOGIC

Now, assume TH is not consistent. Since every derivation just uses finitely
many premises and every formula uses just finitely many symbols this deriva-
tion is a derivation Tn ⊢ ⊥ for some n, a contradiction.

It remains to show that TH is a Henkin-theory. Assume that ∃x:φ is a
closed formula in LH . Since the formula just contains finitely many symbols
there is an n so that ∃x:φ is a closed formula in the language Ln. The theory
Tn+1 contains the formula ∃x:φ → φ[c/x] for a constant symbol c so that
TH ⊢ ∃x:φ→ φ[c/x] follows immediately. �

For the next step we assume that the closed formulas of the language are
enumerated, and we denote by φn the n-th closed formula. This does not
cause any problems since the set of formulas is enumerable.

Definition 58 Let T be a theory, and define the following theories recur-
sively:

1. T0 := T .

2. Tn+1 :=

{
Tn ∪ {φn} if Tn ∪ {φn} is consistent,
Tn ∪ {¬φn} if Tn ∪ {φn} is inconsistent.

3. T c :=
∪
i≥0

Ti.

Lemma 59 If T is a consistent Henkin-theory, then T c is a consistent and
complete Henkin-theory.

Proof. First, we want to show that each Tn is consistent. The case n = 0 is
trivial. Assume there Tn+1 is inconsistent. Then by the construction of Tn+1

the theory Tn is inconsistent, a contradiction to the induction hypothesis.
Now, assume T c is inconsistent. Then there is a derivation T c ⊢ ⊥. Since

every derivation uses just finitely many premises this derivation is actually a
derivation Tn ⊢ ⊥ for some n, a contradiction.

T c is Henkin-theory because T = T0 is, and the language was not modi-
fied.

Finally, for every closed formula φn we have φ ∈ Tn or ¬φn ∈ Tn so that
T c is complete. �

We are now ready to prove the main theorem of this chapter.

Theorem 60 Every consistent theory has a model.



2.3. NATURAL DEDUCTION 57

Proof. Let T be a consistent theory. Then the theory T c
H , precisely (TH)

c,
is a consistent and complete Henkin-theory. By Lemma 54 this theory has a
model H. Let H′ denote the model derived from H by restricting H to the
language of T , i.e., removing the interpretation of those symbols that are not
in the language L(T ).

Let φ ∈ T . Then φ ∈ T c
H , and, hence, we have |=H φ. Since φ is a

formula in the language L(T ) we conclude |=H′ φ. �
An important consequence of the previous theorem is the following:

Theorem 61 (Compactness) Let T be a theory. Then T has a model iff
every finite subset of T has a model.

Proof. ′ ⇒′ is trivial. For the converse implication assume T does not have
a model. By Theorem 60 we conclude that T is inconsistent, i.e., there is a
derivation T ⊢ ⊥. This derivation just uses finitely many premises from T .
If T ′ denotes that set, we have T ′ ⊢ ⊥, i.e., there is a finite subset of T that
is inconsistent. �

Theorem 62 (Compactness (2nd version)) Let T be a theory, and φ be
a closed formula. Then φ is true in all models of T iff there is a finite subset
S of T so that φ holds in all models of S.

Proof. Assume S is a finite subset of T with a model M in which φ is
false. Since φ is closed ¬φ is true in |mathvcalM verifying that S ∪ {¬φ}
has a model. If the above holds for every finite subset of T then we conclude
by Theorem 61 that T ∪ {¬φ} has a model. This is a contradiction to the
assumption that φ is true in all models of T . �

We want to illustrate the importance of the (two versions of the) com-
pactness theorem by two examples.

Example 63 In this example we want to construct a model that is different
from the natural numbers, meaning not isomorphic, but satisfies exactly the
same formulas.

Consider the natural number N and a suitable language therefor that con-
tains at least the constant symbol 1, the function symbol + and the binary
predicate < with their usual interpretation. Let

Th(N) := {φ | φ closed and |=N φ},



58 CHAPTER 2. FIRST-ORDER LOGIC

i.e., the set of all closed formulas that are true in the natural numbers (also
called the theory of N). Notice that Th(N) is a complete theory since every
closed formula is either true or false in this model.

In order to construct a different model of Th(N) let n denote the term
1 + 1 + · · · + 1 with n occurrences of 1. Consequently, the value of n is the
natural number n. Furthermore, we extend the language by a new constant
symbol c, and we consider the theory

T := Th(N) ∪ {c > n | n ∈ N}.

We want to show that this theory has a model using the compactness theorem.
Therefore, let S ⊆ T be a finite subset of T . Since S is finite S is contained
in Tm := Th(N) ∪ {c > n | n ≤ m} for an m ∈ N. The natural number
together with m+ 1 being the interpretation of c is obviously a model of Tm,
and, hence, a model of S.

By removing the interpretation of c from a model of T we get a model of
Th(N). This model still contains an element that is bigger than every natural,
i.e., is not isomorphic to N.

Example 64 In this example we consider the language of groups, i.e., a
constant symbol 1, a binary function symbol · and a unary function symbol
−1 written as an exponent. The theory G of groups consists of the following
formulas:

∀x, y, z: x · (y · z) = (x · y) · z,
∀x: 1 · x = x,

∀x: x−1 · x = 1.

The models of this theory are called groups. Furthermore, a group is called
torsionfree iff the following formulas are valid:

φ2 = ∀x:(x ̸= 1 → x · x ̸= 1),

φ3 = ∀x:(x ̸= 1 → (x · x) · x ̸= 1),

...

φn = ∀x:(x ̸= 1 → (. . . (x · x) · . . .) · x︸ ︷︷ ︸
n−times

̸= 1),

...



2.4. NORMAL FORMS OF FORMULAS 59

We want to show that there is no finite set of formulas characterizing the
torsionfree groups, i.e., there is no finite set of closed formulas T so that G
is a model of G ∪ {φ2, φ3, . . .} iff G is a model of G ∪ T . Notice that it is
sufficient to show that there is no formula that characterizes the torsionfree
groups since a model satisfies all formulas of a finite set T = {ψ1, . . . , ψn}
iff it satisfies the formula ψ = ψ1 ∧ . . . ∧ ψn.

Assume there is a formula ψ with the desired property. Then ψ is true
in all torsionfree groups, i.e., true in all models of G ∪ {φ2, φ3, . . .}. By
Theorem 62 there is an m ∈ N so that ψ is true in all models of the theory
G∪ {φ2, φ3, . . . , φm}. Let p > m be a prime number, and consider the group
Zp. This group satisfies φ2, φ3, . . . , φm but is not torsionfree.

2.4 Normal forms of formulas

In this section we want to study normal forms of first-order formulas. The
normal forms discussed here can be combined with the disjunctive or con-
junctive normal form introduced for predicate logic. First, we provide some
derivations needed later.

Lemma 65 Let φ, φ1, φ2, φ3 ∈ FOL be formulas so that x does not occur
free in φ3. Then we have:

1. ⊢ ∀x:∀y:φ↔ ∀y:∀x:φ.

2. ⊢ ∀x:∀y:φ↔ ∀y:∀x:φ.

3. ⊢ ¬∀x:φ↔ ∃x:¬φ.

4. ⊢ ¬∃x:φ↔ ∀x:¬φ.

5. ⊢ ∀x:(φ1 ∧ φ3) ↔ ∀x:φ1 ∧ φ3.

6. ⊢ ∀x:(φ1 ∧ φ2) ↔ ∀x:φ1 ∧ ∀x:φ2.

7. ⊢ ∀x:(φ1 ∨ φ3) ↔ ∀x:φ1 ∨ φ3.

8. ⊢ ∃x:(φ1 ∨ φ3) ↔ ∃x:φ1 ∨ φ3.

9. ⊢ ∃x:(φ1 ∨ φ2) ↔ ∃x:φ1 ∨ ∃x:φ2.

10. ⊢ ∃x:(φ1 ∧ φ3) ↔ ∃x:φ1 ∧ φ3.



60 CHAPTER 2. FIRST-ORDER LOGIC

Proof. In the following derivation we will always omit the application of → I
and ↔ I.

1. We just prove → since the converse implication follows analogously:

∀x:∀y:φ
∀y:φ ∀E
φ ∀E

∀x:φ ∀I

∀y:∀x:φ ∀I

The variable condition in the two applications is satisfied since ∀x:∀y:φ
does not contain x or y freely.

2. Again, we just prove →:

∃x:∃y:φ
[∃y:φ]2

[φ]1

∃x:φ ∃I

∃y:∃x:φ ∃I

∃y:∃x:φ ∃E1

∃y:∃x:φ ∃E2

The variable condition in the two applications of ∃E is satisfied since
∃y:∃x:φ does not contain x or y freely.

3.

¬∀x:φ

[¬∃x:¬φ]2
[¬φ]1
∃x:¬φ ∃I

⊥ ¬E
φ PBC1

∀x:φ ∀I

⊥ ¬E
∃x:¬φ PBC2

∃x:¬φ
[¬φ]1

[∀x:φ]2
φ ∀E

⊥ ¬E

⊥ ∃E1

¬∀x:φ ¬I2

The variable conditions of ∀I in the first derivation and of ∃E in the
second derivation are satisfied since x does neither occur free in ¬∃x:¬φ
nor in ⊥ and ∀x:φ.

4.

¬∃x:φ
[φ]1

∃x:φ ∃I

⊥ ¬E
¬φ ¬I1

∀x:¬φ ∀I

[∃x:φ]2

∀x:¬φ
¬φ ∀E [φ]1

⊥ ¬E

⊥ ∃E1

¬∃x:φ ¬I2



2.4. NORMAL FORMS OF FORMULAS 61

The variable conditions of ∀I in the first derivation (provided by Shahid
Mahmood) and of ∃E in the second derivation are satisfied since x does
neither occur free in ¬∃x:φ nor in ⊥ and ∀x:¬φ.

5.

∀x:(φ1 ∧ φ3)
φ1 ∧ φ3

∀E
φ1

∧E1
∀x:φ1

∀I
∀x:(φ1 ∧ φ3)
φ1 ∧ φ3

∀E
φ3

∧E2
∀x:φ1 ∧ φ3

∧I

∀x:φ1 ∧ φ3

∀x:φ1
∧E1

φ1
∀E

∀x:φ1 ∧ φ3

φ3
∧E2

φ1 ∧ φ3
∧I

∀x:(φ1 ∧ φ3)
∀I

The variable conditions of ∀I in the first derivation and the second
derivation are satisfied since x does neither occur free in ∀x:(φ1 ∧ φ3)
nor in ∀x:φ1 ∧ φ3 (assumption on φ3).

6. This derivation is similar to the previous one by adding an application
of ∀I, respectively of ∀E, in the second branch of both parts.

7. For the implication → we first provide a derivation ∀x:(φ1∨φ3),¬φ1 ⊢
∀x:φ1 ∨ φ3:

∀x:(φ1 ∨ φ3)
φ1 ∨ φ3

∀E

¬φ1 [φ1]
1

⊥ ¬E
∀x:φ1 ∨ φ3

PBC
[φ3]

1

∀x:φ1 ∨ φ3
∨I2

∀x:φ1 ∨ φ3
∨E1

Using the derivation above we get ∀x:(φ1 ∨ φ3),¬∀x:φ1 ⊢ ∀x:φ1 ∨ φ3

as follows:

(3)
....

¬∀x:φ1 → ∃x:¬φ1 ¬∀x:φ1

∃x:¬φ1
→E

∀x:(φ1 ∨ φ3) · · · [¬φ1]
1

....
∀x:φ1 ∨ φ3

∀x:φ1 ∨ φ3
∃E1

The variable condition for ∃E is satisfied since x does neither occur free
in ∀x:(φ1 ∨ φ3) nor in ∀x:φ1 ∨ φ3 (assumption on φ3). Finally, using
the derivation above we get

Lemma 15(4)
....

∀x:φ1 ∨ ¬∀x:φ1

[∀x:φ1]
1

∀x:φ1 ∨ φ3
∨I1

∀x:(φ1 ∨ φ3) . . . [¬∀x:φ1]
1

....
∀x:φ1 ∨ φ3

∀x:φ1 ∨ φ3
∨E1



62 CHAPTER 2. FIRST-ORDER LOGIC

The converse implication follows from

∀x:φ1 ∨ φ3

[∀x:φ1]
1

φ1
∀E

φ1 ∨ φ3
∨I1

[φ3]
1

φ1 ∨ φ3
∨I2

φ1 ∨ φ3
∨E1

∀x:(φ1 ∨ φ3)
∀I

The variable condition of ∀I is satisfied since x does not occur free in
∀x:φ1 ∨ φ3 (assumption on φ3).

8.

∃x:(φ1 ∨ φ3)

[φ1 ∨ φ3]
2

[φ1]
2

∃x:φ1
∃I

∃x:φ1 ∨ φ3
∨I1

[φ3]
2

∃x:φ1 ∨ φ3
∨I2

∃x:φ1 ∨ φ3
∨E1

∃x:φ1 ∨ φ3
∃E2

The variable condition of ∃E is satisfied since x does not occur free in
∃x:φ1 ∨ φ3 (assumption on φ3).

∃x:φ1 ∨ φ3

[∃x:φ1]
2

[φ1]
1

φ1 ∨ φ3
∨I1

∃x:(φ1 ∨ φ3)
∃I

∃x:(φ1 ∨ φ3)
∃E1

[φ3]
2

φ1 ∨ φ3
∨I2

∃x:(φ1 ∨ φ3)
∃I

∃x:(φ1 ∨ φ3)
∨E2

The variable condition of ∃E is satisfied since x does not occur free in
∃x:(φ1 ∨ φ3).

9. This derivation is similar to the previous one by adding an application
of ∃I, respectively of ∃E, in the right most branch of both parts.

10.

∃x:(φ1 ∧ φ3)

[φ1 ∧ φ3]
1

φ1
∧E1

∃x:φ1
∃I [φ1 ∧ φ3]

1

φ3
∧E2

∃x:φ1 ∧ φ3
∧I

∃x:φ1 ∧ φ3
∃E1



2.4. NORMAL FORMS OF FORMULAS 63

The variable condition of ∃E is satisfied since x does not occur free in
∃x:φ1 ∧ φ3 (assumption on φ3).

∃x:φ1 ∧ φ3

∃x:φ1
∧E1

[φ1]
1

∃x:φ1 ∧ φ3

φ3
∧E2

φ1 ∧ φ3
∧I

∃x:(φ1 ∧ φ3)
∃I

∃x:(φ1 ∧ φ3)
∃E1

The variable condition of ∃E is satisfied since x does neither occur free
in ∃x:(φ1 ∧ φ3) nor in ∃x:φ1 ∧ φ3 (assumption on φ3). �

We want to illustrate the first normal form by an example.

Example 66 Consider the formula ∀x:p(x)∨ (∃y:q(y)∧∀x:r(x)). Using the
equivalences from the previous lemma we are able to move all quantifiers to
the beginning of the formula.

∀x:p(x) ∨ (∃y:q(y) ∧ ∀x:r(x)) ↔ ∀x:(p(x) ∨ (∃y:q(y) ∧ ∀x:r(x)))
↔ ∀x:(p(x) ∨ ∃y:(q(y) ∧ ∀x:r(x)))
↔ ∀x:∃y:(p(x) ∨ (q(y) ∧ ∀x:r(x)))
↔ ∀x:∃y:(p(x) ∨ ∀x:(q(y) ∧ r(x)))
↔ ∀x:∃y:∀z:(p(x) ∨ (q(y) ∧ r(z)))

Notice that in Step 5 we had to rename to bounded variable x since it is free
in p(x). Furthermore, the matrix (the quantorfree part) of the last formula
above is in disjunctive normal form.

Definition 67 A formula φ ∈ FOL is called a prenex formula iff it is of
the form Q1x1:Q2x2: · · ·Qnxn:φ

′ where Qi ∈ {∀,∃} for i ∈ {1, . . . , n} and φ′

quantorfree. φ′ is called the matrix of φ.

Theorem 68 For every formula φ ∈ FOL there exists an equivalent prenex
formula ψ.

Proof. The proof uses induction on the structure of φ.

φ = p(x1, . . . , xn) or φ = ⊥: In this case φ is already a prenex formulas.



64 CHAPTER 2. FIRST-ORDER LOGIC

φ = φ′ ∧ φ′′: By the induction hypothesis there are prenex formulas ψ′ =
Q′

1x
′
1: · · ·Q′

nx
′
n:χ

′ and ψ′′ = Q′′
1x

′′
1: · · ·Q′′

mx
′′
n:χ

′′. We may assume, w.l.o.g.,
that all variables x′1, . . . , x

′
n, x

′′
1, . . . , x

′′
m are different (otherwise rename

them using Lemma 43). Then φ is equivalent to

Q′
1x

′
1: · · ·Q′

nx
′
n:Q

′′
1x

′′
1: · · ·Q′′

mx
′′
n:(χ

′ ∧ χ′′)

by Lemma 65(5,7,8,10).

φ = φ′ ∨ φ′′ or φ = φ′ → φ′′: Similar to the previous case.

φ = Qx:φ′: By the induction hypothesis φ′ is equivalent to a prenex formula
ψ′ so that φ is equivalent to the prenex formula Qx:ψ′. �

Example 66 also shows that the prenex normal form is not necessarily
unique. Starting with the existential quantifier (instead of the left-most
universal quantifier) leads to a different formula, namely ∃y:∀x:∀z:(p(x) ∨
(q(y) ∧ r(z))). However, both normal form are equivalent, of course.

As in the example the prenex normal form can be combined with either
the conjunctive or disjunctive normal form of the matrix.

Definition 69 A prenex formula φ = Q1x1: · · ·Qnxn:φ
′ is called in universal

(existential) skolem normal form iff Qi = ∀ (= ∃) for all i ∈ {1, . . . , n}.

The notion of a skolem normal form seems to be too restrictive, i.e., not
every formula might have an equivalent skolem normal form. This is true if
we fix the language. If we allow extra function symbols one is able to find
always an equivalent skolem normal form in the following sense:

Theorem 70 For every prenex formula φ in a language L there are formulas
φ∀ and φ∃ in an extended language L+ so that:

1. ⊢L+ φ∃ iff ⊢L φ.

2. ⊢L+ ¬φ∀ iff ⊢L ¬φ.



Chapter 3

Modal Logic

We want to concentrate on propositional modal logics. As the previous sen-
tence already suggests we are talking about a whole class of different logics
distinguished by certain properties of their intended class of models. For
example, temporal logic focuses on past and future time, whereas dynamic
logic focuses on the behavior of programs. All of those logics have a common
kernel. They enrich propositional logic by new operators, � ’box’ and ♢ ’di-
amond’, that give access to a restricted version of quantification. Depending
on the context (or the intended interpretation) those operators have different
reading. We want to sketch three of them:

1. The formula ♢φ can be read as ’It is possibly the case that φ’, and
�φ as ’Necessarily φ’. Under this reading typical axiom schemas such
as �φ → ♢φ and φ → ♢φ become ’Whatever is necessary, is possible’
and ’What is, is possible’.

2. In this reading (epistemic logic) the operators express knowledge. �φ
reads as ’The agent knows that φ’.

3. The last version reads �φ as ’φ is provable’. This reading is especially
used in provability logics for Peano arithmetics.

3.1 Syntax

For simplicity we are going to introduce a basic modal language using one
set of unitary modal operators, � and ♢. An extension to multiple sets of

65



66 CHAPTER 3. MODAL LOGIC

operators, not necessarily unary, is possible. We will study such an example,
propositional dynamic logic, in the next chapter.

Definition 71 The set of Mod of modal formulas is defined as the set Prop
of propositional formulas extended by the following construction: If φ ∈ Mod,
then �φ ∈ Mod and ♢φ ∈ Mod.

We adopt all convention and precedences from propositional logic.

3.2 Semantics

The intended interpretation of the modal operators is a quantification re-
stricted to elements related by a certain relation. Notice that the elements
are not explicitly available in the language, i.e., there are no constant symbol,
no individual variables or even terms. The elements and the corresponding
quantification is implicit in the langauge.

For example, in temporal logic we are talking about points in time that
are in an obvious relationship. A suitable interpretation of ♢φ is ’φ will be
true at a future time’, or in term of propositional logic ∃t:tC ≤ t∧φ(t) where
tc is the current time and ≤ is the time relationship.

Definition 72 A frame F = (W,R) is a pair such that:

1. W is a non-empty set, called the universe.

2. R is a binary relation on W , i.e., R ⊆ W ×W .

We will use the usual notation Rxy to denote (x, y) ∈ R, i.e., that x and y
are in relation R.

The elements of W are called points, states, worlds, times and situations
depending on the intended interpretation of the modal logic.

A frame can be visualized as graph.

Example 73 Consider the set W = {w1, w2, w3, w4, w5} and the relation

R = {(w1, w2), (w1, w3), (w2, w4), (w3, w2), (w3, w5), (w4, w1), (w4, w3), (w5, w4)}



3.2. SEMANTICS 67

This frame can be visualized by the following graph where each edge corre-
sponds to a pair in the relation R.

w5

!!D
DD

DD
DD

D

w3

((QQ
QQQ

QQQ
QQQ

QQQ
Q

==zzzzzzzz
w4

oo

vvmmm
mmm

mmm
mmm

mmm

w1

OO

// w2

OO

A model adds an interpretation of the propositional variables to a frame.
A propositional variable has to be interpreted as a property (or predicate)
on the elements of the universe.

Definition 74 A model is a pair M = (F , v) where F is a frame and v :
Prop → P(W ) is a function, called valuation, assigning a subset of W to
each propositional variable.

Now, we are ready to define the validity of modular formulas.

Definition 75 Let M be a model, and w ∈ W be a state. The satisfaction
relation M, w |= φ is recursively defined by:

1. M, w |= p iff w ∈ v(p).

2. M, w ̸|= ⊥.

3. M, w |= ¬φ iff M, w ̸|= φ.

4. M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2.

5. M, w |= φ1 ∨ φ2 iff M, w |= φ1 or M, w |= φ2.

6. M, w |= φ1 → φ2 iff M, w |= φ2 whenever M, w |= φ1.

7. M, w |= ♢φ iff there is a w′ ∈ W with Rww′ and M, w′ |= φ.

8. M, w |= �φ iff for all w′ ∈ W with Rww′ we have M, w′ |= φ.

We say φ is true (or satisfied) in M at w iff M, w |= φ. φ is called true in
M (written M |= φ) iff M, w |= φ for all w ∈ W , and φ is called valid (or
true, or a tautology) iff it is true in all models (written |= φ).



68 CHAPTER 3. MODAL LOGIC

We want to illustrate the previous definition by an example.

Example 76 Consider the frame from Example 73, and choose the valuation
function v(p) = {w2, w3} and v(q) = {w3, w5}.

Then the formula ♢q → �p is true at w1 since there is a state reachable
from w1 (via R) in q (namely w3) and all states that is reachable from w1

are in p. The same formula is not true at w3.
As a second example, consider the formula p → ♢¬p. This formula is

true at all states since from w2 as well as from w3 there is an edge ending
outside of p.

3.3 Deductive System

We want to switch to a different kind of system, so called Hilbert-style de-
ductive system. This kind of system is characterized by providing a huge
set of axioms, or better, axiom schemas, and few deduction rules. A char-
acterizing property of those systems is that one does not make temporary
assumptions. Every formula in the derivation is a valid formula (not pending
on any assumption).

Definition 77 A K-derivation is either an axiom or application of a rule
to a K-derivations. The axioms are given by all instances of the following
schemas:

(Prop) All instances of propositional tautologies.

(K) �(φ→ ψ) → (�φ→ �ψ).

(Dual) ♢φ↔ ¬�¬φ.

The rules are:

(MP)

φ→ ψ φ

ψ
MP

(Gen)
φ
�φ Gen

We write ⊢ φ iff there is a derivation of φ.



3.3. DEDUCTIVE SYSTEM 69

By an instance of a schema we refer to formulas obtained by uniformly
replacing φ, ψ etc. by concrete modular formulas. For example, �p∨¬�p is
an axiom of the above calculus since it is an instance of φ ∨ ¬φ, which is a
propositional tautology.

As defined above (Prop) is an infinite, but decidable, list of schemas. It
can be replaced by a finite list. For example, the following axiom schemas
constitutes a suitable set:

1. φ→ (ψ → φ).

2. (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ)).

3. (¬ψ → ¬φ) → (φ→ ψ).

4. ⊥ ↔ ¬(φ→ φ).

5. φ ∨ ψ ↔ (¬φ→ ψ).

6. φ ∧ ψ ↔ ¬(φ→ ¬ψ).

It is easier to reason about a Hilbert-style system, e.g., proving soundness
and completeness, than it is to reason about a natural deduction system.
But they are hard to use as the following derivation of �p ∧�q → �(p ∧ q)
suggests:

Instead of using the tree notation, derivations in Hilbert-style calculus
are often presented as a list of formulas where each line is either an axiom or
the result of applying a rule to previous lines.

1 p→ (q → q ∧ p) (Prop)
2 �(p→ (q → q ∧ p)) Gen 1
3 �(p→ (q → q ∧ p)) → (�p→ �(q → q ∧ p)) K
4 �p→ �(q → q ∧ p) MP 2,3
5 (�p→ �(q → q ∧ p)) → ((�(q → q ∧ p)

→ (�q → �(q ∧ p))) → (�p→ (�q → �(p ∧ q))))
(Prop)

6 �(q → q ∧ p) → (�q → �(q ∧ p)) K
7 (�(q → q ∧ p) → (�q → �(q ∧ p))) → (�p→ (�q → �(p ∧ q)))

MP 4,5
8 �p→ (�q → �(p ∧ q)) MP 6,7
9 �p→ (�q → �(p ∧ q)) → (�p ∧�q → �(p ∧ q)) (Prop)
10 �p ∧�q → �(p ∧ q) MP 8,9



70 CHAPTER 3. MODAL LOGIC

There is a common pitfall that is very easy to fall into when switching
from natural deduction to a Hilbert-style system. We are not allowed to
freely make assumptions. The following sequences is not legal:

1 p Assumption
2 �p Gen 1
3 p→ �p Discharge assumption
Every line in Hilbert-style proof must be a valid formula. This is not the

case for line 1. In fact the formula, p → �p is not even valid. Take, for
example, the frame a // b and let v(p) = {a}.

Theorem 78 (Soundness) If φ ∈ Mod, then ⊢ φ implies |= φ.

Proof. The proof is done by induction on the derivation. We just prove the
soundness of the Axioms K and Dual and that the rule GenEverything else
was already shown in Chapter 2.

Assume M is a model and w ∈ W with M, w |= �(φ→ ψ). We have to
show that M, w |= �φ → �ψ also holds. Assume that M, w |= �φ. Then
we have M, w′ |= φ → ψ and M, w′ |= φ for all w′ ∈ R with Rww′ using
both assumptions. This implies M, w′ |= ψ for all w′ ∈ R with Rww′, and,
hence, M, w |= �ψ.

Axiom Dual is straight forward application of Lemma 65(3) and (4), and,
therefore, left as exercise.

Finally, assume that |= φ, i.e., M, w |= φ for all models M and all
w ∈ W . Now, let M be a model and w ∈ W be an element. We have to
show that M, w |= �φ. Therefore, let w′ ∈ W be an element with Rww′.
The assumption on φ implies M, w′ |= φ, and, hence, M, w |= �φ. �

A completeness theorem can also be proved. Again, this is done by con-
structing a model for every consistent theory. We omit this proof and just
state the result.

Theorem 79 (Completeness) If φ ∈ Mod, then |= φ implies ⊢ φ.

Depending on extra properties of the relation R in a frame one may define
stronger modal logics. Such a property is related to a certain extra axiom
in the corresponding modal logic. The following list shows some commonly
used axioms and their traditional names:
(4) ♢♢φ→ ♢φ
(T) φ→ ♢φ
(B) φ→ �♢φ
(D) �φ→ ♢φ



3.4. DECIDABILITY 71

There is a convention naming the logics by the axioms used, e.g., KT4 is the
modal logic generated by adding Axiom (T) and (4). Sometimes abbreviation
or historical names are used, thus, one uses T, S4, B and S5 instead of KT,
KT4, KB, KT4B.

The following lists several modal logic and the class of frames for which
they are sound and complete:
K all frames
K4 transitive frames
T (KT) reflexive frames
B (KB) symmetric frames
KD right-unbounded frames
S4 (KT4) reflexive, transitive frames
S5 (KT4B) frames whose relation is an equivalence relation

3.4 Decidability

For simplicity we reduce the language of modal logic to the operators ¬,∨
and ♢, i.e., we replace the other operators by their equivalent construction
in the reduced language:

φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2)

φ1 → φ2 = ¬φ1 ∨ φ2

�φ = ¬♢¬φ

Definition 80 A set Σ ⊆ Mod of formulas is called subformula closed iff
the following holds:

1. If △φ ∈ Σ for △ ∈ {¬,♢}, then φ ∈ Σ.

2. If φ1 ∨ φ2 ∈ Σ, then φ1 ∈ Σ and φ2 ∈ Σ.

A subformula closed set of formulas naturally induces an equivalence re-
lation on any model.

Definition 81 Let M be a model, and Σ be a subformula closed set of for-
mulas. The binary relation ≡Σ⊂ W ×W on the set of states is defined by:

v ≡Σ w iff for all φ ∈ Σ : (M, v |= φ ⇐⇒ M, w |= φ).



72 CHAPTER 3. MODAL LOGIC

Lemma 82 Let M be a model, and Σ be a subformula closed set of formulas.
Then ≡Σ is an equivalence relation.

Proof. All three properties, reflexivity, transitivity and symmetry, follow
immediately from the corresponding property of ⇐⇒ . �

The induced equivalence relation ≡Σ can be used to define a new model
based on the equivalence classes.

Definition 83 Let M be a model, and Σ be a subformula closed set of for-
mulas. Then the model Mf

Σ is defined by:

1. W f
Σ = {[w]Σ | w ∈ W} where [w]Σ denotes the equivalence class of w

with respect to ≡Σ.

2. Rf [w]Σ[v]Σ iff there is a w′ ∈ [w]Σ and a v′ ∈ [v]Σ with Rwv.

3. vfΣ(p) = {[w]Σ | w ∈ v(p)} for all propositional variables.

Mf
Σ is called the filtration of M through Σ.

If it is clear from the context we will omit the index Σ.
Notice that the notion of a filtration is more general. For simplicity we

have chosen the smallest filtration in the definition above. This choice is
sufficient for the basic modal logic. If one considers additional properties
such as transitivity the more general notion is required.

We want to illustrate the situation so far by an example.

Example 84 Consider the model M = (N, R, v) on the set of natural num-
bers with R = {(0, 1), (0, 2), (1, 3), (2, 3)} ∪ {(n, n + 1) | n ≥ 3} and v(p) =
N \ {0}. The frame is visualized in the following graph:

2
&&MM

MMM
M

0

88qqqqqq

&&MM
MMM

M 3 // 4 // · · ·
1

88qqqqqq

Furthermore, consider the subformula closed set {♢p, p}. In this model we
have the following:

M, n |= ♢p for all n ∈ N.
M, 0 ̸|= p.

M, n |= p for all n ∈ N \ {0}



3.4. DECIDABILITY 73

Consequently, we have exactly two equivalence classes [0] = {0} and [1] =
N \ {0}. Since we have R01 and R12 we get Rf [0][1] and Rf [1][1]. Last
but not least vf (p) = {[n] | n ∈ vp} = {[1]}. The frame of the fitration is
visualized by the following graph:

[0] // [1] ii

An important property of a filtration is that the state space is finite.

Theorem 85 Let M be a model, Σ be a subformula closed set of formulas,
and Mf be the filtration of M through Σ. Then W f has at most 2n elements
where n is the size of Σ.

Proof. The elements in W f are the equivalence classes of ≡Σ. Define a
function g : W f → P(Σ) by g([w]) := {φ ∈ Σ | M, w |= φ}.

First, we have to show that g is well-defined. Assume w ≡ v. By the
definition of ≡ we have M, w |= φ iff M, v |= φ for all φ ∈ Σ. We conclude
{φ ∈ Σ | M, w |= φ} = {φ ∈ Σ | M, v |= φ}.

We want to show that g is injective, which immediately implies the as-
sertion. Assume g([w]) = g([v]). Then {φ ∈ Σ | M, w |= φ} = {φ ∈ Σ |
M, v |= φ} follows, and, hence, w ≡ v. �

It remains to be shown that the filtration satisfies essentially, i.e., in terms
of the given set Σ of formulas, the same formulas.

Theorem 86 (Filtration Theorem) LetM be a model, Σ be a subformula
closed set of formulas, and Mf be the filtration of M through Σ. Then
M, w |= φ iff Mf , [w] |= φ for all φ ∈ Σ.

Proof. The proof is done by induction on φ. The property of Σ being
subformula closed allows us to apply the induction hypothesis.

φ = p: The assertion follows immediately from the definition of vf .

φ = ⊥: This formula is not true in any model.

φ = ¬ψ: We compute

Mf , [w] |= ¬ψ ⇐⇒ Mf , [w] ̸|= ψ definition |=
⇐⇒ M, w ̸|= ψ induction hypothesis

⇐⇒ M, w |= ¬ψ definition |=.



74 CHAPTER 3. MODAL LOGIC

φ = ψ1 ∨ ψ2: Similar to the previous case.

φ = ♢ψ: Assume M, w |= ♢ψ. Then there is a v with Rwv and M, v |= ψ.
The definition of Rf implies Rf [w][v], and the induction hypothesis
shows Mf , [v] |= ψ. We conclude Mf [w] |= ♢ψ.
Conversely, suppose Mf , [w] |= ♢ψ. Then there is a [v] with Rf [w][v]
and Mf , [v] |= ψ. From the definition of Rf we conclude that there
are elements w′ ∈ [w] and v′ ∈ [v] with Rw′v′. Furthermore, by the
induction hypothesis we haveM, v |= ψ. Since v′ ≡ v we getM, v′ |= ψ
so that M, w′ |= ♢ψ follows. We conclude M, w |= ♢ψ since w ≡ w′.�

Putting everything together we get the following theorem:

Theorem 87 (Finite Model Property) Let φ ∈ Mod be a formula. Then
φ is satisfiable iff φ is satisfiable on a finite model containing at most 2n el-
ements where n is the number of subformulas of φ.

Proof. Assume φ is satisfiable, i.e., there is a model M and a state w with
M, w |= φ. Let Σ be the set of all φ and all of its subformulas. Then in the
filtration we have M, [w] |= φ, i.e., φ is satisfiable on a finite model with the
required size. �

The last theorem shows that basic modal logic is decidable. As mentioned
above, if we consider additional properties on a frame such as transitivity we
may have to use a more general notion of a filtration. The reason is that
the smallest filtration may not satisfy this additional property. We want to
illustrate this by an example.

Example 88 Consider the model M = ({a, b, c, d}, {(a, b), (c, d)}, v) with
v(p) = {b, c}.

b c

��
a

OO

d
This frame is transitive. Now consider the subformula closed set {♢p, p}. In
this model we have:

M, x |= p for x ∈ {b, c}.
M, x ̸|= p for x ∈ {a, d}.
M, a |= ♢p.
M, x ̸|= ♢p for x ∈ {b, c, d}.



3.4. DECIDABILITY 75

Consequently, we have three equivalence classes [a] = {a}, [b] = {b, c} and
[d] = {d}. The relation Rf of the smallest filtration is visualized by:

[a] // [b] // [d]

This frame is not transitive.



76 CHAPTER 3. MODAL LOGIC



Chapter 4

Propositional Dynamic Logic

In this chapter we want to study a specific modal logic introduced to reason
about programs - Propositional Dynamic Logic (PDL). This kind of logic
describes the interaction between programs, their execution and proposi-
tions that are independent of the domain of computation, i.e., independently
whether the program works on integers of lists of images. Therefore, pro-
grams in this logic do not contain a notion of an assignment. Instead, the
program is built up from primitive statements that are interpreted by arbi-
trary binary relations on an abstract set of state. Using PDL one is able to
express and to prove properties of the dynamic or flow of the program, i.e., the
sequence of atomic operations. But the language of PDL is not rich enough
to state properties of the result of that computation. The latter can be done
in the first-order extension of PDL called Dynamic Logic (DL). However,
reasoning about the sequence of computation is useful in many application.
For example, code optimization in a compiler is usually based on general
program transformations not effecting the sequence of atomic statements.
Correctness of such a transformation can be expressed (and be proven) in
PDL.

4.1 Syntax

PDL is a modal logic with countable many � and ♢ operations. In fact,
there is a � and a ♢ for each program. Furthermore, there is a construction
(?) converting a formula φ into a program φ? - the test whether φ is true.

Definition 89 Let P be a set of propositional variables, and
∏

be a set of

77



78 CHAPTER 4. PROPOSITIONAL DYNAMIC LOGIC

atomic programs. The set PDL of formulas of PDL and the set Prog of
programs are defined by:

1. Each propositional variable is a formula, i.e., P ⊆ PDL.

2. ⊥ ∈ PDL.

3. If φ1, φ2 ∈ PDL, then ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, φ1 → φ2 ∈ PDL.

4. If φ ∈ PDL and π ∈ Prog, then [π]φ, ⟨π⟩φ ∈ PDL.

5. Each atomic program is a program, i.e.,
∏

⊆ Prog.

6. If π1, π2 ∈ Prog, then π∗
1, π1; pi2, π1 ∪ π2 ∈ Prog.

7. If φ ∈ PDL, then φ? ∈ Prog.

The programs have the following intuitive meanings:

π1;π2 Sequential composition, first π1 then π2.
π1 ∪ π2 Nondeterministic choice, either π1 or π2.
π∗ Iteration, execute π a nondeterministically chosen finite number

of times.
φ? Test, proceed if φ is true, fail otherwise.

The program constructions may seem unconventional. They were chosen
because of their mathematical simplicity. Familiar program constructions
can be expressed in terms of those PDL programs. Some examples are:

skip ≡ (¬⊥)?
if φ then π1 else π2 ≡ φ?;π1 ∪ (¬φ)?;π2
while φ do π ≡ (φ?; π)∗; (¬φ)?
repeat π until φ ≡ π; ((¬φ)?;π)∗;φ?

The two modal operators have the following intuitive meanings:

[π]φ ”Every computation of π that terminates leads to a state
satisfying φ.”

⟨π⟩φ ”There is a computation of π that terminates in a state
satisfying φ.”

Consequently, ⟨π⟩φ implies that π terminates, whereas [π]φ does not.



4.2. SEMANTICS 79

4.2 Semantics

PDL is a modal logic with an infinite collection of modal operators, one
pair for each PDL program. Consequently, a frame has to provide a binary
relation for each such pair, i.e., for each program. This relation is the compu-
tational behavior of the program and defined recursively starting from atomic
programs.

Since programs and formulas are defined mutually recursive we are not
longer able to separate frames and models.

Definition 90 A PDL model M = (W, {Rπ | π ∈ Prog}, v) is a triple with
a non-empty set W , a function v : P → P(W ) and a set of binary relations
satisfying:

1. Rα ⊆ W × W is an arbitrary binary relation on W for each atomic
program α ∈

∏
.

2. Rπ1;π2 = Rπ1 ;Rπ2 = {(u,w) | ∃v:Rπ1uv ∧Rπ2vw}.

3. Rπ1∪π2 = Rπ1 ∪Rπ2.

4. Rπ∗ = R∗
π =

∪
i≥0

Ri
π (reflexive transitive closure).

5. Rφ? = {(w,w) | M, w |= φ}.

The validity relationship M, w |= φ is defined as before.

Example 91 In the case of a PDL model we may visualize a frame by a
labelled graph. For example, the model given by

1 α // 2

β����
��
��
�

3
α

VV
β

gg

α // 4
and v(p) = {1, 2}, v(q) = {4} assigns the relation {(1, 2), (3, 1), (3, 4)} to α
and {(2, 3), (3, 1)} to β. We want to compute the relation associated with the
program

(while p do (α ∪ β));α,



80 CHAPTER 4. PROPOSITIONAL DYNAMIC LOGIC

i.e., the relation of (p?; (α ∪ β))∗; (¬p)?;α. First, we compute the iterations
of p?; (α ∪ β)

0∪
i=0

(p?; (α ∪ β))i = {(1, 1), (2, 2), (3, 3), (4, 4)}

1∪
i=0

(p?; (α ∪ β))i = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (4, 4)}

2∪
i=0

(p?; (α ∪ β))i = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 4)}

3∪
i=0

(p?; (α ∪ β))i = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 4)}

In this case a finite iteration is sufficient. Consequently, the relation of
(p?; (α ∪ β))∗; (¬p)? is {(1, 3), (2, 3), (3, 3), (4, 4)} and of the whole program
{(1, 4), (2, 4), (3, 4)}. By the definition of the modal operator we get

M |= [(while p do (α ∪ β));α]q
M ̸|= ⟨(while p do (α ∪ β));α⟩q


