COSC/MATH 4P61 - Theory of Computation Term Test 2

Question 1: (8 marks) Use the Pumping Lemma to show that the language

$$
L=\left\{0^{i} 10^{i} \mid i \geq 1\right\}
$$

is not regular.

Solution: Assume L is regular and let n be the constant from the Pumping Lemma. Pick the word $w=0^{n} 10^{n}$. Using the Pumping Lemma we can write w as $w=x y z$ with $|x y| \leq n$. Therefore $y \neq \epsilon$ consists of only 0 's that appear before the 1 in w. The word $x y^{0} z=x z$ must be in L, which is a contradiction since it contains n copies of 0 after the 1 but less than n copies of 0 before the 1 .

Question 2: (12 marks, 3 marks for each part) Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow a A \mid a b S \\
& A \rightarrow B B \mid C A C \\
& B \rightarrow b B \mid \epsilon \\
& C \rightarrow a C
\end{aligned}
$$

a. Eliminate all ϵ-productions.
b. Eliminate all unit productions from the resulting grammar in a).
c. Eliminate all useless symbols from the resulting grammar in b).
d. Put the resulting grammar in c) in Chomsky Normal Form.

Solution:

a. B is obviously nullable. A is also nullable because of $A \rightarrow B B$. We obtain:

$$
\begin{aligned}
& S \rightarrow a A|a| a b S \\
& A \rightarrow B B|B| C A C \mid C C \\
& B \rightarrow b B \mid b \\
& C \rightarrow a C
\end{aligned}
$$

b. There is only one unit production $A \rightarrow B$ so that we obtain:

$$
\begin{aligned}
& S \rightarrow a A|a| a b S \\
& A \rightarrow B B|b B| b|C A C| C C \\
& B \rightarrow b B \mid b \\
& C \rightarrow a C
\end{aligned}
$$

c. S, A, B are obviously generating; C is not. We obtain:

$$
\begin{aligned}
& S \rightarrow a A|a| a b S \\
& A \rightarrow B B|b B| b \\
& B \rightarrow b B \mid b
\end{aligned}
$$

In this grammar all symbols are reachable, and, hence, useful.
d. We obtain the following grammar in Chomsky Normal Form:

$$
\begin{aligned}
& S \rightarrow C A|a| C E \\
& A \rightarrow B B|D B| b \\
& B \rightarrow D B \mid b \\
& C \rightarrow a \\
& D \rightarrow b \\
& E \rightarrow D S
\end{aligned}
$$

