COSC/MATH 4P61 - Theory of Computation Example Questions Test 3

Question 1: Use the Pumping Lemma to show that the language

$$L = \{a^i b^j c^k \mid i < j < k\}$$

is not context-free.

Hint: Use the word $a^n b^{n+1} c^{n+2}$ where $n \ge 2$ is the constant of the Pumping Lemma and distinguish the cases that vwx contains or does not contain c.

Question 2: Consider the Turing machine

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_2\})$$

with $\delta(q_1, 0) = (q_3, 1, R)$, $\delta(q_3, 1) = (q_1, 0, R)$ and $\delta(q_3, B) = (q_2, B, R)$. What is the language L(M) accepted by M? Justify your answer.

Question 3: Construct a Turing machine that adds two numbers, i.e., it transforms an initial tape of the form $0^m 10^n$ (*m* and *n* 0's separated by a 1) into 0^{m+n} (m + n 0's, no 1). The tape head should be at the left-most 0 before and after the computation. Run your machine on the input 0010. *Hint: Make sure that you consider the cases* m = 0 and n = 0.

Question 4: Write a possible code s for the Turing machine in Question 2. What is the number of this string, i.e., for which n is $w_n = s$? (You can provide the number in binary)

Question 5: Consider the language

$$L = \{0w \mid w \in L_u\} \cup \{1w \mid w \notin L_u\}.$$

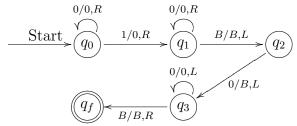
Is this language recursively enumerable? Justify your answer.

Solutions

Question 1: Assume L is context-free and let $n \ge 2$ be the constant from the Pumping Lemma. Pick the word $z = a^n b^{n+1} c^{n+2}$. Using the Pumping Lemma we can write z as z = uvwxy with $|vwx| \le n$ and $vx \ne \epsilon$. If vwx does not have a c, then uv^3wx^3y has at least 3n > n+2 a's or b's and is, therefore, not in L. If vwx has a c, then it cannot have an a because $|vwx| \le n$. In this case the word uwy has n a's and at most (n+1) + (n+2) - 1 = 2n+2b's and c's showing that $uwy \notin L$.

Question 2: The language accepted by this Turing machine is given by the regular expression $(01)^*0$. The machine moves in every step of its computation to the right. It only accepts a word if it is in state q_3 and sees a blank. The only way of getting in state q_3 is by reading a 0 in state q_1 . Therefore, the last symbol of the input must be a 0. The machine can get from q_1 to q_1 only by reading 01, which can be repeated.

Question 3: We define $M = (\{q_0, q_1, q_2, q_3, q_f\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_f\})$ by:



	State					
_	0 ↑	0	1	0	_	q_0
_	0	0 ↑	1	0	-	q_0
_	0	0	1 ↑	0	-	q_0
_	0	0	0	0 ↑	-	q_1
-	0	0	0	0	_ ↑	q_1
_	0	0	0	0 ↑	-	q_2
_	0	0	0 ↑	-	-	q_3
_	0	0 ↑	0	-	-	q_3
_	0 ↑	0	0	_	_	q_3
	0	0	0	-	_	q_3
-	0 ↑	0	0	_	-	q_f

Question 4: The three instruction can be encoded by:

$\delta(q_1, 0) = (q_3, 1, R)$	0101000100100
$\delta(q_3, 1) = (q_1, 0, R)$	0001001010100
$\delta(q_3, B) = (q_2, B, R)$	00010001001000100

so that

is a possible code for M. This string has number

in binary.

Question 5: Suppose L would be recursively enumerable, i.e., there is a Turing machine M that accepts L. Then we can construct a Turing machine M' that accepts $\overline{L_u}$ as follows. Given an input w, M' modifies the input to 1w and then simulates M. If M accepts, then w is in $\overline{L_u}$, and our machine M' accepts as well. If M does not accept 1w or runs forever, then M' does the same. The existence of M' is a contradiction to the fact that L_u is recursively enumerable but not recursive, i.e., $\overline{L_u}$ is not recursively enumerable.