COSC 4P42 - Cheat Sheet

Natural deduction rules and Coq implementation

$\frac{\varphi \psi}{\varphi \wedge \psi} \wedge \mathbf{I}$	And_Intro. Replaces the current goal $A \wedge B$ by the two goals A and B .
$\frac{\varphi \wedge \psi}{\varphi} \wedge E1$	And_Elim_1 in H. Applies to an assumption of the form H : $A \wedge B$ and generates a new assumption H0 : A
$\frac{\varphi \wedge \psi}{\psi} \wedge \mathbf{E2}$	And_Elim_2 in H. Applies to an assumption of the form \mathbb{H} : $A \wedge B$ and generates a new assumption $\mathbb{H}0$: B
	And_Elim_all in H. Applies to an assumption of the form $H : A \land B$ and replaces it with the two assumptions $H : A$ and H0 : B . The tactic is then recusively applied to H and H0.
$\frac{\varphi}{\varphi \lor \psi} \lor \mathrm{I1}$	$\texttt{Or_Intro_1}$. Replaces the current goal $A \lor B$ by the goal A .
$\frac{\psi}{\varphi \lor \psi} \lor \mathrm{I2}$	Or_Intro_2. Replaces the current goal $A \lor B$ by the goal B .
$ \begin{array}{ccc} [\varphi] & [\psi] \\ \vdots & \vdots \\ \frac{\varphi \lor \psi & \chi & \chi}{\chi} & \chi \\ \hline \chi & \chi & \chi \\ \end{array} \lor \mathbf{E} $	Or_Elim in H. Applies to an assumption of the form \mathbb{H} : $A \lor B$. It generates two proof obligations with assumptions \mathbb{H} : A resp. \mathbb{H} : B and the current goal.

$$\begin{array}{c} [\varphi] \\ \vdots \\ \psi \\ \overline{\varphi \to \psi} \to \mathbf{I} \end{array}$$

 $\frac{\varphi \rightarrow \psi \quad \varphi}{\psi} \rightarrow \mathbf{E}$

 $\frac{\varphi}{\forall x : \varphi} \forall \mathbf{I} \quad \begin{array}{l} \text{if } x \text{ does not occur} \\ \text{free in any premises} \\ \text{of this subtree} \end{array}$

 $\frac{\forall x : \varphi}{\varphi[t/x]} \; \forall \mathbf{E}$

$$\frac{\varphi[t/x]}{\exists x : \varphi} \exists \mathbf{I}$$

Impl_Intro. Replaces the current goal $A \to B$ by B and adds the assumption H : A.

Impl_Elim in H and H0. Applies to the two assumptions of the form H : $A \rightarrow B$ and H0 : A and adds the new assumption H1 : B.

Not_Intro. Replaces the current goal $\sim A$ by False and adds the assumption H : A.

Not_Elim in H and H0. Applies to the two assumptions of the form H : $\sim A$ and H0 : A and adds the new assumption H1 : False.

PBC.

Replaces the current goal A by False and adds the assumption $H : \sim A$.

$Forall_Intro.$

Replaces the current goal forall x, A by A and adds the variable x : A to the assumptions.

Forall_Elim in H with t.

Applies to an assumption of the form H : forall x, A. It generates a new assumption HO : A[t/x].

Exists_Intro with t. Replaces the current goal exists x, A by A[t/x].

Hoare rules and Coq implementation

(Skip)	Hoare_skip_rule.
	Applies to a goal of the form $\{ \{ A \} \}$ Skip $\{ \{ A \} \}$
$\{ \varphi \} \texttt{skip} \{ \varphi \}$	}}. It solves the goal.

	Hoare_assignment_rule.
(Assignment)	Applies to a goal of the form $\{\{ A[t/x] \}\} x$
$\{\psi[a/x]\}x := a\{\psi\}$::= t {{ A }}. It solves the goal.

 $\begin{array}{c} (\text{Conditional}) \\ \\ \hline \{\varphi \wedge b\}c_0\{\psi\} \quad \{\varphi \wedge \neg b\}c_1\{\psi\} \\ \hline \{\varphi\} \texttt{if } b \texttt{ then } c_0 \texttt{ else } c_1\texttt{ fi}\{\psi\} \end{array}$

(Loop)

$$\frac{\{\varphi \land b\}c\{\varphi\}}{\{\varphi\}\text{while } b \text{ do } c \text{ od}\{\varphi \land \neg b\}}$$

Hoare_if_rule. Applies to a goal of the form $\{\{A\}\}\$ If b Then c_0 Else c_1 Fi $\{\{B\}\}\$ and replaces it by the two goals $\{\{A \land b = true \}\}\ c_0 \ \{\{B\}\}\$ and $\{\{A \land b = false \}\}\ c_1 \ \{\{C\}\}\$.

Hoare_while_rule.

Applies to a goal of the form $\{\{ I \}\}$ While b Do c Od $\{\{ I \land b = false \}\}$ and replaces it by $\{\{ I \land b = true \}\}$ c $\{\{ I \}\}$.

Hoare_consequence_rule_left with A'. Identical to Hoare_consequence_rule with A' and B. Just two new goals are generated.

Hoare_consequence_rule_right with B'. Identical to Hoare_consequence_rule with A and B'. Just two new goals are generated.

Additional Hoare Tactics

- Hoare_tactic. Applies the rules (Skip), (Assignment), and (Conditional) starting at the end of the program using the rules (Sequencing) and (Consequence) and the weakest pre-condition approach. Stops when it encounters a loop.
- Hoare_while_tactic with I. Works like Hoare_tactic. but can handle one loop at the top level of the program (i.e. a loop that is not within an if-statement). When it encounters a loop it uses I as the invariant.