COSC 4P42 - Cheat Sheet

Natural deduction rules and Coq implementation

—Z— VIl
eV

And_Intro.

Replaces the current goal A A B by the two goals
A and B.

And Elim_ 1 in H.
Applies to an assumption of the foorm H : AA B
and generates a new assumption HO : A

And Elim 2 in H.
Applies to an assumption of the form H : AA B
and generates a new assumption HO : B

And Elim all in H.
Applies to an assumption of the form H : A A
B and replaces it with the two assumptions H :
A and HO : B. The tactic is then recusively
applied to H and HO.

Or_Intro_1.
Replaces the current goal AV B by the goal A.

Or_Intro 2.
Replaces the current goal AV B by the goal B.

Or_Elim in H.

Applies to an assumption of the form H : AV B.
It generates two proof obligations with assump-
tions H : A resp. H : B and the current goal.

—1
o=
=Y
—E
(0
(]
i
=5 1
24
1k
[=¢]
L
3 PBC
® if does not occur
Vz:ip free in any premises
of this subtree
Vax:p
VE
plt/z]
t
g[.
T

Impl_Intro.
Replaces the current goal A — B by B and adds
the assumption H : A.

Impl Elim in H and HO.
Applies to the two assumptions of the form H :

A — B and HO : A and adds the new assump-
tion H1 : B.
Not_Intro.

Replaces the current goal ~ A by False and adds
the assumption H : A.

Not_Elim in H and HO.
Applies to the two assumptions of the form H :

~ A and HO : A and adds the new assumption
H1 : False.
PBC.

Replaces the current goal A by False and adds
the assumption H : ~ A.

Forall_Intro.
Replaces the current goal forall z, A by A and
adds the variable x : A to the assumptions.

Forall Elim in H with t.
Applies to an assumption of the form H :
forall =, A. It generates a new assumption HO

Alt/z].

Exists_Intro with t.
Replaces the current goal exists xz, A by A[t/x].

if z does not oc-
o X cur free in x and
X JE in any premises
of the right sub-
tree accept ¢

Exists_Elim in H.

Applies to an assumption of the form H :
exists z, A. It adds the variable z : A and the
new assumption HO : A.

Hoare rules and Coq implementation

(Skip)
{¢}skip{p}

(Assignment)

{¢la/a]}ye = a{y}

(Sequencing)

{eteo{x}t {da{v}

{e}eo; ei{v}

(Conditional)
{onbieofdy {pA—bier{d}

{¢}if b then ¢y else ¢y fi{e}

(Loop)
{o A b}e{p}

{¢}while b do c od{p A —b}

Hoare_skip_rule.
Applies to a goal of the form {{ A }} Skip {{ A
+}. It solves the goal.

Hoare_assignment_rule.
Applies to a goal of the form {{ A[t/x] }} x
::=t {{ A }}. It solves the goal.

Hoare_sequence_rule with B.
Applies to a goal of the form {{ A }} co;;c1 {{
C }} and replaces it by the two goals {{ A }} co

{{ B}}and{{ B }} o1 {{ C}}.

Hoare_if rule.

Applies to a goal of the form {{ A }} If b Then
co Else ¢; Fi {{ B }} and replaces it by the
two goals {{ A A b = true }} co {{ B }} and

{{ AAND=false }} ¢, {{ C }}.

Hoare while rule.
Applies to a goal of the form {{ I }} While b
Do ¢ 0d {{ I A b = false }} and replaces it

by {{I Ab=true }} c {{I}}

(Consequence)

Hoare_consequence_rule with A’ and B’.

Applies to a goal of the form {{ A }} ¢ {{ B }}

Fo—¢ {¢}te{d'} B¢ =9 and replaces it by the three goals A — A?, {{ A’

{pte{v}

}}c {{ B }},and B> — B.

Hoare_consequence_rule_left with A’.
Identical to Hoare_consequence rule with A’
and B. Just two new goals are generated.

Hoare_consequence_rule_right with B’.
Identical to Hoare_consequence rule with A
and B’. Just two new goals are generated.

Additional Hoare Tactics

Hoare_tactic.

Hoare_ while_tactic with I.

Applies the rules (Skip), (Assignment), and (Con-
ditional) starting at the end of the program using
the rules (Sequencing) and (Consequence) and the
weakest pre-condition approach. Stops when it
encounters a loop.

Works like Hoare tactic. but can handle one loop
at the top level of the program (i.e. a loop that is not
within an if-statement). When it encounters a loop it
uses I as the invariant.

