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Chapter 1

Mathematical Preliminaries

1.1 Induction

A very important proof method in mathematics (and computer science) is the prin-
ciple of induction. The most commonly known form of induction is mathematical
induction. In this section we want to investigate a method called well-founded in-
duction. This method is very powerful and implies most principles of induction.

Definition 1.1.1 A well-founded relation is a binary relation ≺ on a set A such
that there are no infinite descending chains · · · ≺ ai ≺ · · · ≺ a1 ≺ a0. If a ≺ b we
say that a is a predecessor of b.

A well-founded relation is necessarily irreflexive, i.e. there is no element a ∈ A with
a ≺ a, since, otherwise, · · · ≺ a ≺ · · · ≺ a ≺ a is an infinite chain.

We denote the reflexive closure of ≺ by ≼, i.e.

a ≼ b : ⇐⇒ a = b or a ≺ b.

Notice that we do not require that ≺ is transitive. However, well-founded relations
may be characterized in terms of minimal elements.

Theorem 1.1.2 Let ≺ be a binary relation on a set A. Then ≺ is well-founded iff1

any non-empty subset B ⊆ A has a minimal element, i.e. an element b ∈ B with

∀c : (c ≺ b⇒ c ̸∈ B).

1We write iff as an abbreviation for if and only if.
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Proof. ⇐: Suppose every non-empty subset of A has a minimal element, and
assume · · · ≺ ai ≺ · · · ≺ a1 ≺ a0 is an infinite chain. Then the set B = {ai | i ≥ 0}
does not have a minimal element, a contradiction.

⇒: Assume B is a non-empty subset of A. Construct a chain as follows: Let a0 be
an arbitrary element of B. Inductively, assume a chain an ≺ · · · ≺ a0 of n elements
has been constructed. If there is a b ∈ B with b ≺ an take an+1 = b. If not stop the
construction. The constructed chain must be finite since ≺ is well-founded, i.e. is of
the form an ≺ · · · ≺ a0. an is the required minimal element since no element of B
is a predecessor of an by construction. �
Now, we are going to formulate (and prove) the principle of well-founded induction.

Theorem 1.1.3 (Principle of well-founded induction) Let ≺ be a well-founded
relation on a set A, and P be a property of elements of A. Then we have

∀a ∈ A : P (a) iff ∀a ∈ A : ([∀b ≺ a : P (b)] ⇒ P (a)).

Proof. ⇒: This is trivial since P holds for all elements of A.

⇐: Suppose ∀a ∈ A : ([∀b ≺ a : P (b)] ⇒ P (a)), and assume that P does not
hold for an element a ∈ A. Then the set {a ∈ A | ¬P (a)} is not empty, and has,
by the previous theorem, a minimal element m. Now, let b ∈ A be an arbitrary
element with b ≺ m. Since m is minimal b must have property P , implying that all
predecessors of m satisfy P . We conclude P (m), a contradiction. �
Notice that the base case is given by those elements that do not have a predecessor.

If we take n ≺ m iff n + 1 = m, i.e. the successor relation on natural numbers, the
principle of well-founded induction specializes to mathematical induction.

Later we will use structural induction on expressions and derivations. Both princi-
ples are again special cases of well-founded induction.



Chapter 2

First-Order Logic

In this chapter we want to study first-order logic as a formal system, i.e., as a system
with specific rules that can be implemented on a computer. In first-order logic one is
allowed to combine basic statements using logical connectives and to quantify over
entities.

2.1 Syntax

In order to provide a suitable language to talk about elements of the domain of
interest we require the following components:

1. X a set of variables.

2. F a set of function symbols. Each symbol has its arity.

3. P a set of predicate symbols. Each symbol has its arity.

0-ary functions symbols are called constant symbols. Such a symbol corresponds to
a function requiring no parameter at all, i.e., the function can be identified with the
element it returns. Similar the propositional variable of propositional logic can be
identified with 0-ary predicate symbols so that first-order logic becomes a extension
of propositional logic.

Definition 2.1.1 The set Term of terms is recursively defined by the following.

1. Each variable x ∈ X is a term, i.e., X ⊆ Term.

3
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2. If f ∈ F is an n-ary function symbol and t1, . . . , tn ∈ Term are terms, then
f(t1, . . . , tn) ∈ Term.

Examples of terms are f(x, y, z) or f(f(x, x, x), f(y, y, y), z) assuming that f is a
ternary function symbol and x, y, z are variables.

Definition 2.1.2 The set FOL of first-order formulas (or formulas) is recursively
defined by the following.

1. If p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ Term are terms, then
p(t1, . . . , tn) ∈ FOL. Formulas of this kind are called atomic formulas.

2. ⊥ is a formula, i.e, ⊥ ∈ FOL.

3. If φ ∈ FOL then ¬φ ∈ FOL.

4. If φ1, φ2 ∈ FOL then

(a) φ1 ∧ φ2 ∈ FOL and

(b) φ1 ∨ φ2 ∈ FOL and

(c) φ1 → φ2 ∈ FOL.

5. If φ ∈ FOL and x ∈ X then

(a) ∀x:φ ∈ FOL and

(b) ∃x:φ ∈ FOL.

The previous definition defines the set of formulas by giving a set of rules which may
be applied to a base set finitely many times. We also say that the set FOL is defined
recursively by those rules. A set defined in such a way always provides a principle
of induction (see also Chapter 1). In the example of FOL that principle reads as
follows. If we want to show that a certain property N is true for all elements in
FOL it is sufficient to

Base case: show the property N for atomic formulas p(t1, . . . , tn) and the special
formula ⊥;

Induction step I: show the property N for ¬φ by assuming that it is already true
for φ (induction hypothesis);
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Induction step II: show the propertyN for φ1⊗φ2 for⊗ ∈ {∧,∨,→} by assuming
that it is already true for φ1 and φ2 (induction hypothesis).

Induction step III: show the property N for Qx : φ for Q ∈ {∀,∃} by assuming
that it is already true for φ (induction hypothesis).

The base case, in particular in the case of an atomic formula p(t1, . . . , tn), may
require another induction based on the structure of terms. This time the base case
is the case where the term is a variable, and the induction step covers the case that
the term is a function symbol applied to n terms.

We adopt certain precedence rules of the logical symbols. ¬, ∀, and ∃ bind more
tightly than ∧, ∧ tighter than ∨, and ∨ tighter than→. For example, the proposition

p ∧ q ∨ ¬r → p

has to be read as

((p ∧ q) ∨ (¬r)) → p.

Last but not least, we will use the following abbreviations. We write ⊤ for ¬⊥ and
φ1 ↔ φ2 for (φ1 → φ2) ∧ (φ2 → φ1).

In the case of binary function and predicate symbols we will also use infix notation.
For example, instead of writing +(x, y) and ≤ (x, y) we use x+ y and x ≤ y.

Example 2.1.3 In this example we want to express some properties of the natural
numbers in first-order logic. For this purpose we assume that 1 is a constant symbol
(0-ary function symbol), s a unary function symbol, and = a binary predicate symbol.
With the interpretation in mind that 1 denotes the number one, s is the successor
function, and = denotes equality we may state the following formulas:

∀x:∀y:(s(x) = s(y) → x = y)

∀x:(¬(x = 1) → ∃y:x = s(y)).

Notice that we cannot express the principle of induction since it quantifies over all
properties. Such a statement is covered by second-order logic.

We adapt the usual conventions for some negated atomic formulas. For example,
instead of writing ¬(x = y) and ¬(x ≤ y) we use x ̸= y and x ̸≤ y. In addition, we
will group quantifications, i.e., we write ∀x, y, z:φ instead of ∀x:∀y:∀z:φ.
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Definition 2.1.4 An occurrence of a variable x ∈ X in a formula is called bounded
iff it is in a subformula of the form ∀x:φ or ∃x:φ. An occurrence is called free iff it
is not bounded.

Consider the formula
∀x:P (x) ∧ ∃y:Q(x, y).

The occurrence of x in P (x) and the occurrence of y are bounded. The second
occurrence of x in Q(x, y) is free. Another example is

∀y:(y|x ∧ y ̸= 1 → x = y).

Here all occurrences of y are bounded, and all occurrences of x are free. With the
standard interpretation the formula above expresses that x is prime.

Since variables are place holders we need some means to replace them with a concrete
object. For example, we may want to replace x in the last formula by the constant
symbol 2 in order to state that 2 is prime. In general we want to replace a variable
by a term. Unfortunately, we have to be careful because of some undesired side
effects of that operation. If we replace x by y in the last example we get

∀y:(y|y ∧ y ̸= 1 → y = y).

This formula does not stand for ’y is prime’. The problem is that the term we going
to substitute contains a variable y, and that a free occurrence of x is under the scope
of ∀y: or ∃y:. The variable is free so that any variable contained in the term we are
going to substitute should also be free.

Definition 2.1.5 Let x ∈ X be a variable, and φ ∈ FOL be a formula. A t ∈ Term
is called free for x in φ iff no free occurrence of x is in a subformula ∀y:φ′ or ∃y:φ′

for a variable y occurring in t.

Now we are ready to introduce the notion of substitution.

Definition 2.1.6 Let x ∈ X be a variable, t, t′ ∈ Term be terms, and φ ∈ FOL be
a formula.

1. By t′[t/x] we denote the result of replacing all occurences of x in t′ by t.

2. If t is free for x in φ, then we denote by φ[t/x] the result of replacing any free
occurrence of x in φ by t.

If we write φ[t/x] we always assume that t is free for x. Later we will see that this
can always be achieved by renaming bounded variables.
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2.2 Semantics

Since we are now able to talk about individuals or elements the simple universe of
truth values is not rich enough to provide a suitable interpretation of the entities of
the language.

Definition 2.2.1 Let F be a set of function symbols, and P be a set of predicate
symbols. A model M consists of the following data:

1. |M| a non-empty set, called the universe.

2. For each function symbol f ∈ F with arity n a n-ary function fM : |M|n →
|M|.

3. For each predicate symbol p ∈ P with arity n a subset pM ⊆ |M|n.

Notice that constant symbols are interpreted by elements.

Definition 2.2.2 Let M be a model. An environment σ : X → |M| is a function
from the set of variables X to the universe of the model. For an environment σ, a
variable x, and a value a ∈ |M| denote by σ[a/x] the environment defined by

σ[a/x](y) =

{
a iff x = y,
σ(y) iff x ̸= y.

We start with the interpretation of a term. Naturally, a term should denote an
element so that the interpretation of a term is an element of the universe.

Definition 2.2.3 Let M be a model, and σ be an environment. The extension
σ̄ : Term → |M| of σ is defined by:

1. σ̄(x) = σ(x) for every x ∈ X.

2. σ̄(f(t1, . . . , tn)) = fM(σ̄(t1), . . . , σ̄(tn)).

The next step is to define the validity of formulas.

Definition 2.2.4 Let M be a model, and σ be an environment. The satisfaction
relation |=M φ[σ] is recursively defined by:
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1. |=M p(t1, . . . , tn)[σ] iff (σ̄(t1), . . . , σ̄(tn)) ∈ pM.

2. ̸|=M ⊥[σ], i.e., not |=M ⊥[σ].

3. |=M ¬φ[σ] iff ̸|=M φ[σ].

4. |=M φ1 ∧ φ2[σ] iff |=M φ1[σ] and |=M φ2[σ].

5. |=M φ1 ∨ φ2[σ] iff |=M φ1[σ] or |=M φ2[σ].

6. |=M φ1 → φ2[σ] iff |=M φ2[σ] whenever |=M φ1[σ].

7. |=M ∀x:φ[σ] iff |=M φ[σ[a/x]] for all a ∈ |M|.

8. |=M ∃x:φ[σ] iff |=M φ[σ[a/x]] for some a ∈ |M|.

From the definition above we derive some additional notions.

Definition 2.2.5 Let Σ be a set of formulas, and φ be a formula.

1. φ is called valid in the model M (|=M φ) iff |=M φ[σ] for all environments σ.

2. φ is called valid (|= φ) iff |=M φ for all models M.

3. φ is called satisfiable iff there is a model M and an environment so that |=M
φ[σ].

4. φ follows from Σ in M (Σ |=M φ) iff for all environments σ, whenever |=M
ψ[σ] for all ψ ∈ Σ, then |=M φ[σ].

5. φ follows from Σ (Σ |= φ) iff Σ |=M φ for all models M.

Let us consider an example.

Example 2.2.6 Consider the language and the formulas of Example 2.1.3 again.
The first model is the set of natural number N and the obvious interpretation of
the function, constant and predicate symbols, e.g., sN(x) = x + 1. In this case both
formulas are valid. The first formula ∀x:∀y:(s(x) = s(y) → x = y) simply says that
successor is injective, and the second formula ∀x:(¬(x = 1) → ∃y:x = s(y)) says
that every element except 1 has a predecessor.

Now, we want to consider several different models. In all cases we will interpret the
symbol = by equality. First, consider the model A with universe {1A}. The function
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symbol s is interpreted by the identity function. This model can be visualized by the
following graph:

1A

sA





The identity function is injective and all elements have a predecessor so that both
formulas are again satisfied.

For the second model consider again the natural numbers. This time we interpret s
by the function n 7→ 2n. This function is injective but all odd numbers are not in
the image of that function.

Last but not least, consider the models B and C given by the graphs

1B sB // b

sB

��
1C sC // c1

sC

��

c0
sC

>>}}}}}}}}

Here sB is not injective but every elements except 1 has a predecessor. In the model
C both formulas are not true.

The following lemma states that a formula only depends on the variables that occur
free.

Lemma 2.2.7 Let t ∈ Term be a term, φ ∈ FOL be a formula, and M be a model.

1. If the environments σ1 and σ2 coincide on all variables of t, then σ̄1(t) = σ̄2(t).

2. If the environments σ1 and σ2 coincide on all free variables of φ, then |=M
φ[σ1] iff |=M φ[σ2].

Proof. Both proofs are done by induction.

1. If t = x is a variable we get

σ̄1(t) = σ1(x) = σ2(x) = σ̄2(t).

If t is of the form f(t1, . . . , tn) with a n-ary function symbol f and terms
t1, . . . , tn we conclude

σ̄1(t) = fM(σ̄1(t1), . . . , σ̄1(tn))

= fM(σ̄2(t1), . . . , σ̄2(tn)) by the induction hypothesis

= σ̄2(t).
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2. If φ = p(t1, . . . , tn) is an atomic formula then every variable in each term is
free in φ so that we conclude σ̄1(ti) = σ̄2(ti) for i ∈ {1, . . . , n} using 1., which
immediately implies the assertion.

If φ = ⊥, then we have ̸|=M φ[σ1] and ̸|=M φ[σ2] by definition.

Assume φ = φ1 ∧ φ2. Then

|=M φ[σ1] ⇔|=M φ1[σ1] and |=M φ2[σ1]

⇔|=M φ1[σ2] and |=M φ2[σ2] Ind. Hyp.

⇔|=M φ[σ1].

The cases where φ is one of the formulas ¬φ′, φ1 ∨φ2, or φ1 → φ2 are similar
to the previous case.

Assume φ = Qx:φ′ with Q ∈ {∀,∃}. The free variables of φ′ are the free
variables of φ and the variable x. Consequently, the environments σ1[a/x]
and σ2[a/x] for an arbitrary a ∈ |M| coincide on all free variables in φ′. We
conclude

|=M φ[σ1] ⇔|=M φ′[σ1[a/x]] for all/some a ∈ |M|
⇔|=M φ′[σ2[a/x]] for all/some a ∈ |M|
⇔|=M φ[σ2],

where the second equivalence is an application of the induction hypothesis.�

The next lemma relates the two notion of substitution and updating an environment.
First we want to illustrate it by an example.

Example 2.2.8 Consider again the formula ∀y:(y|x∧ y ̸= 1 → x = y) using in the
standard model N of the natural numbers, i.e., this formula states that x is prime.
Now, consider the term 2 + 3. On the one hand we could substitute 2 + 3 for x
in the formula, giving ∀y:(y|(2 + 3) ∧ y ̸= 1 → 2 + 3 = y), and check its validity
for a given environment σ. The formula is true for any environment since it does
not contain any free variable. On the other hand, we could first compute the value
σ̄(2+3) = 5 (in order to distinguish terms and natural numbers we use bold symbols
for numbers). This time we compute the validity of the original formula with the
environment σ[5/x]. Once again this result in true.

Lemma 2.2.9 Let x ∈ X be a variable, t, t′ ∈ Term be terms, φ ∈ FOL be a
formula, and M be a model.



CHAPTER 2. FIRST-ORDER LOGIC 11

1. σ̄(t′[t/x]) = σ[σ̄(t)/x](t′).

2. |=M φ[t/x][σ] iff |=M φ[σ[σ̄(t)/x]].

Proof. Both assertions are shown by induction.

1. If t′ = y we distinguish two cases. If x = y we get

σ̄(t′[t/x]) = σ̄(t) = σ[σ̄(t)/x](x) = σ[σ̄(t)/x](t′).

If x ̸= y the environments σ and σ[σ̄(t)/x] coincide on all variables in t′. We
use Lemma 2.2.7(1) and conclude

σ̄(t′[t/x]) = σ̄(y) = σ[σ̄(t)/x](y) = σ[σ̄(t)/x](t′).

If t′ = f(t1, . . . , tn) we immediately get

σ̄(t′[t/x])

= fM(σ̄(t1[t/x]), . . . , σ̄(tn[t/x])) substitution

= fM(σ[σ̄(t)/x](t1), . . . , σ[σ̄(t)/x](tn)) induction hypothesis

= σ[σ̄(t)/x](t′)

2. If φ = p(t1, . . . , tn) we conclude

|=M φ[t/x][σ]

⇔|=M p(t1[t/x], . . . , tn[t/x])[σ] substitution

⇔ (σ̄(t1[t/x]), . . . , σ̄(tn[t/x])) ∈ pM

⇔ (σ[σ̄(t)/x](t1), . . . , σ[σ̄(t)/x](tn)) ∈ pM 1.

⇔|=M p(t1, . . . , tn)[σ[σ̄(t)/x]]

⇔|=M φ[σ[σ̄(t)/x]].

If φ = ⊥, then we have ̸|=M φ[t/x][σ] and ̸|=M φ[σ[σ̄(t)/x]] by definition.

Assume φ = φ1 ∧ φ2. Then

|=M φ[t/x][σ] ⇔|=M φ1[t/x][σ] and |=M φ2[t/x][σ]

⇔|=M φ1[σ[σ̄(t)/x]] and |=M φ2[σ[σ̄(t)/x]] Ind. Hyp.

⇔|=M φ[σ[σ̄(t)/x]].
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The cases where φ is one of the formulas ¬φ′, φ1 ∨φ2, or φ1 → φ2 are similar
to the previous case.

Assume φ = Qy:φ′ with Q ∈ {∀,∃}. In the case x = y the variable x does not
occur free in φ so that φ[t/x] = φ. By Lemma 2.2.7(2) we get |=M φ[σ] iff
|=M φ[σ[σ̄(t)/x], and, hence, the assertion. Assume x ̸= y. Then we conclude

|=M φ[t/x][σ] ⇔|=M Qy:φ′[t/x][σ]

⇔|=M φ′[t/x][σ[a/y]] for all/some a ∈ |M|
⇔|=M φ′[σ[a/y][σ[a/y](t)/x]] for all/some a ∈ |M|
⇔|=M φ′[σ[a/y][σ̄(t)/x]] for all/some a ∈ |M|

by Lemma 2.2.7(2) since t

is free for x in Qy:φ

⇔|=M φ′[σ[σ̄(t)/x][a/y]] for all/some a ∈ |M|
since x ̸= y

⇔|=M Qy:φ′[σ[σ̄(t)/x]]

⇔|=M φ[σ[σ̄(t)/x]],

where the third equivalence is an application of the induction hypothesis. �

2.3 Natural Deduction

In this section we want to investigate a formal calculus for reasoning about formu-
las. This calculus, called natural deduction, uses proof rules, which allow to infer
formulas from other formulas. By applying these rules in succession, we may infer
a conclusion from a finite set of premises. Suppose a set {φ1, . . . , φn} of formulas is
given. We start to apply a proof rule of the calculus to certain elements of the set
of premises generating a new formula ψ1. In the next step we apply a rule to cer-
tain elements of the set {φ1, . . . , φn, ψ1} generating a new formula ψ2. Continuous
application of the rules to a growing set of formulas will finally end in the intended
result ψ - the conclusion. In this case we are successful in deriving ψ from the set
of premises, and we will denote that by

φ1, . . . , φn ⊢ ψ.

Some rules allow us to make temporary assumptions, i.e., such a rule enlarges the set
of premises temporarily. The derivation itself is actually a tree with the premises
and temporary assumptions we as leafs, applications of rules as nodes, and the
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conclusion as the root. The skeleton of a proof may look as follows (◦ denotes a
premises or assumption, • denotes an intermediate formula generated by a certain
rule, ∗ denotes the conclusion):

◦ ◦ ◦

•

@@@@@@@

~~~~~~~
◦ ◦ • ◦

•

OOOOOOOOOOOOOO

~~~~~~~
•

@@@@@@@

~~~~~~~

∗

OOOOOOOOOOOOOO

oooooooooooooo

The proof rules of the natural deduction calculus are grouped by the logical operators
and constants of the propositional language. For each operator we have introduction
and elimination rules, and for the constant ⊥ a single rule. Introduction rules are
used to infer a formula containing the operator as the outermost symbol. Elimination
rules are used to derive other properties from a formula containing the operator. We
want to discuss these rules in detail.

And introduction: This rule is used to infer a formula of the form φ ∧ ψ. It
seems obvious that we are allowed to conclude this formula if we have already
concluded both φ and ψ. Therefore, the rule becomes

φ ψ

φ ∧ ψ ∧I
.

The rule is binary, i.e, it has to be applied to two subtrees, the first deriving
φ, the second deriving ψ. To the right of the line we denote the name of the
rule (I means introduction, E means elimination).

And elimination: This rule is used to infer other properties from a formula of the
form φ ∧ ψ. We have to such elimination rules given by

φ ∧ ψ
φ ∧E1

φ ∧ ψ
ψ

∧E2
.

Or introduction: These rules is used to infer a formula of the form φ∨ψ. It seems
obvious that is enough to know that either φ or ψ can be derived. Therefore,
we obtain the two rules:

φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2
.
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Or elimination: We are allowed to conclude a property χ from φ ∨ ψ if we know
that φ as well as ψ implies χ. The or-elimination rule formalizes this principle:

φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

χ ∨E.

Notice that the middle and right subtree correspond to the proof of χ by
assuming φ and ψ, respectively.

Implication introduction: In order to infer a formula of the form φ→ ψ we are
allowed to temporarily make the assumption φ. From this assumption we have
to derive the formula ψ. If we are successful we denote this derivation by

φ....
ψ.

In that case we are allowed to conclude φ → ψ. In addition, the temporary
assumption φ is not longer needed. We are allowed to discard it, denoted by
[φ]. The rule finally is:

[φ]
....
ψ

φ→ ψ
→ I

.

PBC: This rule is neither an introduction nor an elimination rule. PBCis an ab-
breviation for proof by contradiction. If we are able to show that ¬φ leads to
a contradiction, the formula ⊥, then we are allowed to conclude φ. The rule
reads:

[¬φ]
....
⊥
φ PBC.

For all elimination: If we know that ∀x:φ is true, then it is legal to conclude that
φ for x being an arbitrary element. In other terms, we are allowed to conclude
that φ[t/x] is true for an arbitrary term t.

∀x:φ
φ[t/x]

∀E
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For all introduction: In order to show that a formula ∀x:φ is true one may simply
show φ, i.e., we simply assume that x is an arbitrary element. For this being
legal we must assure that the variable x is not already used elsewhere (as a
free variable), i.e., that it is a ’fresh/new’ variable. We get the rule

φ

∀x:φ ∀I
if x does not occur free in any
premises of this subtree

This rule has condition, which has to be satisfied before we are allowed to apply
this rule. Notice that this condition refers to the premises of the subtree, i.e.,
just to those assumptions that are not yet discarded.

Exists introduction: This rule is very simple. If we were able to derive φ[t/x] we
have already got a witness t of the existential version of the formula. The rule
simply is

φ[t/x]

∃x:φ ∃I

Exists elimination: To understand this rule it is helpful to consider the case of
a finite model, i.e., a model {a1, . . . , an}. In this case an existential formula
∃x:φ is true if it is true for one of the elements a1, . . . , an. Assume that
the terms t1, . . . , tn denote the elements, i.e., σ̄(ti) = ai, then ∃x:φ is true
if φ[t1/x] ∨ · · · ∨ φ[tn/x] is true. Consequently, we get a rule similar to ∨
elimination. The formula χ must be independent of x, and x be local to that
subtree motivating the variable condition of this rule.

∃x:φ

[φ]
....
χ

χ ∃E
if x does not occur free in χ and in any
premises of the right subtree accept φ

As in the case of ∀I the variable condition refers to the premises of the right
subtree, i.e., just to those assumptions that are not yet discarded.

The table below lists the rules of natural deduction for first-order logic.

As an example we will provide derivations for several properties in the following two
lemmas.

Lemma 2.3.1 Let φ, φ1, φ2 be formulas. Then we have:

1. ⊢ φ↔ ¬¬φ.
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introduction rule elimination rule

∧
φ ψ

φ ∧ ψ ∧I φ ∧ ψ
φ ∧E1

φ ∧ ψ
ψ

∧E2

∨
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2 φ ∨ ψ

[φ]
....
χ

[ψ]
....
χ

χ ∨E

→

[φ]
....
ψ

φ→ ψ
→ I

φ φ→ ψ

ψ
→E

¬

[φ]
....
⊥
¬φ ¬I

φ ¬φ
⊥ ¬E

PBC

[¬φ]
....
⊥
φ PBC

∀
∀x:φ
φ[t/x]

∀E
φ

∀x:φ ∀I if x does not occur
free in any premises
of this subtree

∃
∃x:φ

[φ]
....
χ

χ ∃E

if x does not oc-
cur free in χ and
in any premises of
the right subtree
accept φ

φ[t/x]

∃x:φ ∃I

Table 2.1: Rules of natural deduction for first-order logic
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2. ⊢ ¬φ1 ∧ ¬φ2 ↔ ¬(φ1 ∨ φ2).

3. ⊢ ¬φ1 ∨ ¬φ2 ↔ ¬(φ1 ∧ φ2).

4. ⊢ φ ∨ ¬φ.

5. ⊢ (φ1 → φ2) ↔ ¬φ1 ∨ φ2.

6. ⊢ ¬(φ1 → φ2) ↔ φ1 ∧ ¬φ2.

Proof. In each case we give derivations for both implications.

1.
[¬φ]1 [φ]2

⊥ ¬E
¬¬φ ¬I1

φ→ ¬¬φ → I2

[¬¬φ]2 [¬φ]1
⊥ ¬E
φ PBC1

¬¬φ→ φ → I2

2.

[φ1 ∨ φ2]
2

[¬φ1 ∧ ¬φ2]
3

¬φ1
∧E1 [φ1]

1

⊥ ¬E

[¬φ1 ∧ ¬φ2]
3

¬φ2
∧E2 [φ2]

1

⊥ ¬E

⊥ ∨E1

¬(φ1 ∨ φ2)
¬I2

¬φ1 ∧ ¬φ2 → ¬(φ1 ∨ φ2)
→ I3

[¬(φ1 ∨ φ2)]
3

[φ1]
1

φ1 ∨ φ2
∨I1

⊥ ¬E
¬φ1 ¬I1

[¬(φ1 ∨ φ2)]
3

[φ2]
2

φ1 ∨ φ2
∨I2

⊥ ¬E
¬φ2 ¬I2

¬φ1 ∧ ¬φ2
∧I

¬(φ1 ∨ φ2) → ¬φ1 ∧ ¬φ2
→ I3

3.

[¬φ1 ∨ ¬φ2]
3

[¬φ1]
1

[φ1 ∧ φ2]
2

φ1
∧E1

⊥ ¬E
[¬φ2]

1
[φ1 ∧ φ2]

2

φ2
∧E1

⊥ ¬E

⊥ ∨E1

¬(φ1 ∧ φ2)
¬I2

¬φ1 ∨ ¬φ2 → ¬(φ1 ∧ φ2)
→ I3
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For the second derivation we first show that ¬(¬φ1 ∨ ¬φ2) ⊢ φi for i = 1, 2.

¬(¬φ1 ∨ ¬φ2)
[¬φi]

1

¬φ1 ∨ ¬φ2
∨Ii

⊥ ¬E
φi PBC

1

Using the derivation above we get

[¬(φ1 ∧ φ2)]
2

[¬(¬φ1 ∨ ¬φ2)]
1

....
φ1

[¬(¬φ1 ∨ ¬φ2)]
1

....
φ2

φ1 ∧ φ2
∧I

⊥ ¬E
¬φ1 ∨ ¬φ2

PBC1

¬(φ1 ∧ φ2) → ¬φ1 ∨ ¬φ2
→ I2

4.

[¬(φ ∨ ¬φ)]2

[¬(φ ∨ ¬φ)]2
[φ]1

φ ∨ ¬φ ∨I1
⊥ ¬E
¬φ PBC1

φ ∨ ¬φ ∨I2
⊥ ¬E

φ ∨ ¬φ PBC2

5. The first derivation uses 4.

....
φ1 ∨ ¬φ1

[φ1 → φ2]
2 [φ1]

1

φ2
→E

¬φ1 ∨ φ2
∨I2

[¬φ1]
1

¬φ1 ∨ φ2
∨I1

¬φ1 ∨ φ2
∨E1

(φ1 → φ2) → ¬φ1 ∨ φ2
→ I2

[¬φ1 ∨ φ2]
3

[¬φ1]
1 [φ1]

2

⊥ ¬E
φ2

PBC [φ2]
1

φ2 ∨E1

φ1 → φ2 → I2

¬φ1 ∨ φ2 → (φ1 → φ2)
→ I3
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6.

[¬(φ1 → φ2)]
4

[¬φ1]
2 [φ1]

1

⊥ ¬E
φ2

PBC
φ1 → φ2 → I1

⊥ ¬E
φ1 PBC2

[¬(φ1 → φ2)]
4

[φ2]
3

φ1 → φ2
→ I

⊥ ¬E
¬φ2 ¬I3

φ1 ∧ ¬φ2
∧I

¬(φ1 → φ2) → φ1 ∧ ¬φ2
→ I4

[φ1 ∧ ¬φ2]
2

¬φ2
∧E2

[φ1 → φ2]
1

[φ1 ∧ ¬φ2]
2

φ1
∧E1

φ2
→E

⊥ ¬E
¬(φ1 → φ2)

¬I1

φ1 ∧ ¬φ2 → ¬(φ1 → φ2)
→ I2

This completes the proof. �

Lemma 2.3.2 Let φ, φ1, φ2, φ3 ∈ be formulas. Then we have:

1. ⊢ φ1 ∧ φ2 ↔ φ2 ∧ φ1.

2. ⊢ φ1 ∨ φ2 ↔ φ2 ∨ φ1.

3. ⊢ ⊥ ↔ φ ∧ ¬φ.

4. ⊢ φ1 ∧ (φ2 ∧ φ3) ↔ (φ1 ∧ φ2) ∧ φ3.

5. ⊢ φ1 ∨ (φ2 ∨ φ3) ↔ (φ1 ∨ φ2) ∨ φ3.

6. ⊢ φ1 ∧ (φ2 ∨ φ3) ↔ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3).

7. ⊢ φ1 ∨ (φ2 ∧ φ3) ↔ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3).

Proof. We provide derivations for both implications.

1.
[φ1 ∧ φ2]

1

φ2
∧E2

[φ1 ∧ φ2]
1

φ1
∧E1

φ2 ∧ φ1
∧I

φ1 ∧ φ2 → φ2 ∧ φ1
→ I1

The second derivation is similar.
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2.

[φ1 ∨ φ2]
2

[φ1]
1

φ2 ∨ φ1
∨I2

[φ2]
1

φ2 ∨ φ1
∨I1

φ2 ∨ φ1
∨E1

φ1 ∨ φ2 → φ2 ∨ φ1
→ I2

The second derivation is similar.

3.

[⊥]1

φ ∧ ¬φ PBC

⊥ → φ ∧ ¬φ → I1

[φ ∧ ¬φ]1
¬φ ∧E2

[φ ∧ ¬φ]1
φ ∧E1

⊥ ¬E
φ ∧ ¬φ→ ⊥ → I1

4.

[φ1 ∧ (φ2 ∧ φ3)]
1

φ1
∧E1

[φ1 ∧ (φ2 ∧ φ3)]
1

φ2 ∧ φ3
∧E2

φ2
∧E1

φ1 ∧ φ2
∧I

[φ1 ∧ (φ2 ∧ φ3)]
1

φ2 ∧ φ3
∧E2

φ3
∧E2

(φ1 ∧ φ2) ∧ φ3
∧I

φ1 ∧ (φ2 ∧ φ3) → (φ1 ∧ φ2) ∧ φ3
→ I1

The second derivation is similar.
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As another example using the rules for quantification we provide again two lemmas.

Lemma 2.3.3 Let φ ∈ FOL be a formula not containing a free occurrence of the
variable y. The we have

1. ⊢ ∀x:φ↔ ∀y:φ[y/x].

2. ⊢ ∃x:φ↔ ∃y:φ[y/x].

Proof. In both cases it is sufficient to show ’→’. The other implication is similar.

1.
[∀x:φ]1

φ[y/x]
∀E

∀y:φ[y/x] ∀I

∀x:φ→ ∀y:φ[y/x] → I1

Notice that the variable condition of ∀I is satisfied since φ, and, hence, ∀x:φ
does not contain a free occurrence of y.

2.

[∃x:φ]2
[φ]1

∃y:φ[y/x] ∃I

∃y:φ[y/x] ∃E1

∃x:φ→ ∃y:φ[y/x] → I2

Notice that the ∃I is of the required form since φ[y/x][x/y] is just φ (recall y
does not occur free in φ). Furthermore, the variable condition of ∃E is satisfied
since x does not occur free in ∃y:φ[y/x]. It occurs free in φ, which does not
violate the condition.

This completes the proof. �

Lemma 2.3.4 Let φ, φ1, φ2, φ3 ∈ FOL be formulas so that x does not occur free in
φ3. Then we have:

1. ⊢ ∀x:∀y:φ↔ ∀y:∀x:φ.

2. ⊢ ∀x:∀y:φ↔ ∀y:∀x:φ.

3. ⊢ ¬∀x:φ↔ ∃x:¬φ.



CHAPTER 2. FIRST-ORDER LOGIC 24

4. ⊢ ¬∃x:φ↔ ∀x:¬φ.

5. ⊢ ∀x:(φ1 ∧ φ3) ↔ ∀x:φ1 ∧ φ3.

6. ⊢ ∀x:(φ1 ∧ φ2) ↔ ∀x:φ1 ∧ ∀x:φ2.

7. ⊢ ∀x:(φ1 ∨ φ3) ↔ ∀x:φ1 ∨ φ3.

8. ⊢ ∃x:(φ1 ∨ φ3) ↔ ∃x:φ1 ∨ φ3.

9. ⊢ ∃x:(φ1 ∨ φ2) ↔ ∃x:φ1 ∨ ∃x:φ2.

10. ⊢ ∃x:(φ1 ∧ φ3) ↔ ∃x:φ1 ∧ φ3.

Proof. In the following derivation we will always omit the application of → I and
↔ I.

1. We just prove → since the converse implication follows analogously:

∀x:∀y:φ
∀y:φ ∀E
φ ∀E

∀x:φ ∀I

∀y:∀x:φ ∀I

The variable condition in the two applications is satisfied since ∀x:∀y:φ does
not contain x or y freely.

2. Again, we just prove →:

∃x:∃y:φ
[∃y:φ]2

[φ]1

∃x:φ ∃I

∃y:∃x:φ ∃I

∃y:∃x:φ ∃E1

∃y:∃x:φ ∃E2

The variable condition in the two applications of ∃E is satisfied since ∃y:∃x:φ
does not contain x or y freely.
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3.

¬∀x:φ

[¬∃x:¬φ]2
[¬φ]1
∃x:¬φ ∃I

⊥ ¬E
φ PBC1

∀x:φ ∀I

⊥ ¬E
∃x:¬φ PBC2

∃x:¬φ
[¬φ]1

[∀x:φ]2
φ ∀E

⊥ ¬E

⊥ ∃E1

¬∀x:φ ¬I2

The variable conditions of ∀I in the first derivation and of ∃E in the second
derivation are satisfied since x does neither occur free in ¬∃x:¬φ nor in ⊥ and
∀x:φ.

4.

¬∃x:φ
[φ]1

∃x:φ ∃I

⊥ ¬E
¬φ ¬I1

∀x:¬φ ∀I

[∃x:φ]2

∀x:¬φ
¬φ ∀E [φ]1

⊥ ¬E

⊥ ∃E1

¬∃x:φ ¬I2

The variable conditions of ∀I in the first derivation (provided by Shahid Mah-
mood) and of ∃E in the second derivation are satisfied since x does neither
occur free in ¬∃x:φ nor in ⊥ and ∀x:¬φ.

5.

∀x:(φ1 ∧ φ3)
φ1 ∧ φ3

∀E
φ1

∧E1
∀x:φ1

∀I
∀x:(φ1 ∧ φ3)
φ1 ∧ φ3

∀E
φ3

∧E2
∀x:φ1 ∧ φ3

∧I

∀x:φ1 ∧ φ3

∀x:φ1
∧E1

φ1
∀E

∀x:φ1 ∧ φ3

φ3
∧E2

φ1 ∧ φ3
∧I

∀x:(φ1 ∧ φ3)
∀I

The variable conditions of ∀I in the first derivation and the second derivation
are satisfied since x does neither occur free in ∀x:(φ1 ∧ φ3) nor in ∀x:φ1 ∧ φ3

(assumption on φ3).

6. This derivation is similar to the previous one by adding an application of ∀I,
respectively of ∀E, in the second branch of both parts.

7. For the implication → we first provide a derivation ∀x:(φ1∨φ3),¬φ1 ⊢ ∀x:φ1∨
φ3:

∀x:(φ1 ∨ φ3)
φ1 ∨ φ3

∀E

¬φ1 [φ1]
1

⊥ ¬E
∀x:φ1 ∨ φ3

PBC
[φ3]

1

∀x:φ1 ∨ φ3
∨I2

∀x:φ1 ∨ φ3
∨E1
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Using the derivation above we get ∀x:(φ1∨φ3),¬∀x:φ1 ⊢ ∀x:φ1∨φ3 as follows:

(3)
....

¬∀x:φ1 → ∃x:¬φ1 ¬∀x:φ1

∃x:¬φ1
→E

∀x:(φ1 ∨ φ3) · · · [¬φ1]
1

....
∀x:φ1 ∨ φ3

∀x:φ1 ∨ φ3
∃E1

The variable condition for ∃E is satisfied since x does neither occur free in
∀x:(φ1∨φ3) nor in ∀x:φ1∨φ3 (assumption on φ3). Finally, using the derivation
above we get

Lemma 2.3.1(4)
....

∀x:φ1 ∨ ¬∀x:φ1

[∀x:φ1]
1

∀x:φ1 ∨ φ3
∨I1

∀x:(φ1 ∨ φ3) . . . [¬∀x:φ1]
1

....
∀x:φ1 ∨ φ3

∀x:φ1 ∨ φ3
∨E1

The converse implication follows from

∀x:φ1 ∨ φ3

[∀x:φ1]
1

φ1
∀E

φ1 ∨ φ3
∨I1

[φ3]
1

φ1 ∨ φ3
∨I2

φ1 ∨ φ3
∨E1

∀x:(φ1 ∨ φ3)
∀I

The variable condition of ∀I is satisfied since x does not occur free in ∀x:φ1∨φ3

(assumption on φ3).

8.

∃x:(φ1 ∨ φ3)

[φ1 ∨ φ3]
2

[φ1]
2

∃x:φ1
∃I

∃x:φ1 ∨ φ3
∨I1

[φ3]
2

∃x:φ1 ∨ φ3
∨I2

∃x:φ1 ∨ φ3
∨E1

∃x:φ1 ∨ φ3
∃E2

The variable condition of ∃E is satisfied since x does not occur free in ∃x:φ1∨φ3

(assumption on φ3).

∃x:φ1 ∨ φ3

[∃x:φ1]
2

[φ1]
1

φ1 ∨ φ3
∨I1

∃x:(φ1 ∨ φ3)
∃I

∃x:(φ1 ∨ φ3)
∃E1

[φ3]
2

φ1 ∨ φ3
∨I2

∃x:(φ1 ∨ φ3)
∃I

∃x:(φ1 ∨ φ3)
∨E2
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The variable condition of ∃E is satisfied since x does not occur free in ∃x:(φ1∨
φ3).

9. This derivation is similar to the previous one by adding an application of ∃I,
respectively of ∃E, in the right most branch of both parts.

10.

∃x:(φ1 ∧ φ3)

[φ1 ∧ φ3]
1

φ1
∧E1

∃x:φ1
∃I [φ1 ∧ φ3]

1

φ3
∧E2

∃x:φ1 ∧ φ3
∧I

∃x:φ1 ∧ φ3
∃E1

The variable condition of ∃E is satisfied since x does not occur free in ∃x:φ1∧φ3

(assumption on φ3).

∃x:φ1 ∧ φ3

∃x:φ1
∧E1

[φ1]
1

∃x:φ1 ∧ φ3

φ3
∧E2

φ1 ∧ φ3
∧I

∃x:(φ1 ∧ φ3)
∃I

∃x:(φ1 ∧ φ3)
∃E1

The variable condition of ∃E is satisfied since x does neither occur free in
∃x:(φ1 ∧ φ3) nor in ∃x:φ1 ∧ φ3 (assumption on φ3). �

We will provide further derivation when we consider normal forms of formulas in
first-order logic.

Theorem 2.3.5 (Soundness) Let φ1, . . . , φn and ψ be formulas. If φ1, . . . , φn ⊢
ψ, then φ1, . . . , φn |= ψ holds.

Proof. The proof is done by induction on the derivation φ1, . . . , φn ⊢ ψ.
(Base case): In this case the proof is just a premises, i.e., we have ψ ∈ {φ1, . . . , φn}.
Assume M is a model and σ an environment with |=M φi[σ] for i ∈ {1, . . . , n}.
Then we conclude

|=M ψ[σ]

, and, hence φ1, . . . , φn |= ψ.

(Induction step): We distinguish several cases according the last rule applied.
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∧I : In this case ψ = ψ1∧ψ2 and we have derivations φ1, . . . , φn ⊢ ψ1 and φ1, . . . , φn ⊢
ψ2. From the induction hypothesis we get φ1, . . . , φn |= ψ1 and φ1, . . . , φn |=
ψ2. Now, assume M is a model and σ an environment with |=M φi[σ] for
i ∈ {1, . . . , n}. Then we obtain from the induction hypothesis that |=M ψ1[σ]
and |=M ψ2[σ]. We conclude |=M ψ[σ], and, hence φ1, . . . , φn |= ψ.

∧E1 : In this case we have a derivation φ1, . . . , φn ⊢ ψ ∧ ψ′ for some formula ψ′.
Now, assumeM is a model and σ an environment satisfying the set of premises,
i.e., |=M φi[σ] for i ∈ {1, . . . , n}. By the induction hypothesis we conclude
|=M ψ ∧ ψ′[σ], which implies |=M ψ[σ], and, hence, φ1, . . . , φn |= ψ.

∧E2 : Analogously to ∧E1.

∨I1 : In this case ψ = ψ1 ∨ ψ2 and we have a derivation φ1, . . . , φn ⊢ ψ1. Now,
assume M is a model and σ an environment satisfying the set of premises.
By the induction hypothesis we conclude |=M ψ1[σ], which implies |=M ψ[σ],
and, hence, φ1, . . . , φn |= ψ.

∨I2 : Analogously to ∨I1.

∨E : In this case we have the following derivations

φ1, . . . , φn ⊢ψ1 ∨ ψ2

φ1, . . . , φn, ψ1⊢ψ
φ1, . . . , φn, ψ2⊢ψ

Now, assumeM is a model and σ an environment satisfying the set of premises.
We get |=M ψ1 ∨ψ2[σ] from the induction hypothesis, i.e., either |=M ψ1[σ] or
|=M ψ2[σ]. In the first case we conclude that M and σ satisfy {φ1, . . . , φn, ψ1}.
Using the induction hypothesis again we get |=M ψ[σ]. If |=M ψ2[σ] we con-
clude |=M ψ[σ] analogously.

→I : In this case ψ = ψ1 → ψ2 and we have a derivation φ1, . . . , φn, ψ1 ⊢ ψ2. Now,
assume M is a model and σ an environment satisfying the set of premises. If
M and σ also satisfy ψ1 we conclude |=M ψ2[σ] from the induction hypothesis,
and, hence, |=M ψ[σ]. If M and σ do not satisfy ψ1 we immediately get
|=M ψ[σ].

→E : In this case we have derivations φ1, . . . , φn ⊢ ψ′ and φ1, . . . , φn ⊢ ψ′ → ψ for
some formula ψ′. Now, assume M is a model and σ an environment satisfying
the set of premises. From the induction hypothesis we get |=M ψ′[σ] and
|=M ψ′ → ψ[σ]. We conclude |=M ψ[σ].
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¬I : In this case ψ = ¬ψ′ and we have a derivation φ1, . . . , φn, ψ
′ ⊢ ⊥. Now,

assume M is a model and σ an environment satisfying {φ1, . . . , φn}. If M
and σ also satisfy ψ′ we conclude |=M ⊥[σ] from the induction hypothesis. The
last statement is a contradiction so that we conclude ̸|=M ψ′[σ], and, hence,
|=M ψ[σ].

¬E : In this case ψ = ⊥ and we have derivations φ1, . . . , φn ⊢ ψ′ and φ1, . . . , φn ⊢
¬ψ′ for some formula ψ′. Now, assume M is a model and σ an environment
satisfying the set of premises. From the induction hypothesis we get |=M ψ′[σ]
and |=M ¬ψ′[σ]. This is a contradiction so that such a pair M and σ does not
exist showing φ1, . . . , φn |= ⊥.

PBC : In this case we have a derivation φ1, . . . , φn,¬ψ ⊢ ⊥. Now, assume M
is a model and σ an environment satisfying {φ1, . . . , φn}. If M and σ do
not satisfy ψ we conclude |=M ⊥[σ] from the induction hypothesis. The last
statement is a contradiction so that we conclude |=M ψ[σ].

∀I : In this case ψ = ∀x:ψ′, and we have a derivation φ1, . . . , φn ⊢ ψ′. The variable
condition implies that x does not occur free in any of φ1, . . . , φn. Assume M
is a model and σ an environment with |=M φi[σ] for i ∈ {1, . . . , n}. By Lemma
2.2.7(2) we have |=M φi[σ[a/x]] for all a ∈ |M| and i ∈ {1, . . . , n}. By the
induction hypothesis we conclude |=M ψ′[σ[a/x]] for all a ∈ |M|, and, hence,
|=M ψ[σ].

∀E : In this case ψ = ψ′[t/x], and we have a derivation φ1, . . . , φn ⊢ ∀x:ψ′. Assume
M is a model and σ an environment with |=M φi[σ] for i ∈ {1, . . . , n}. By
the induction hypothesis we conclude |=M ∀x:ψ′[σ], and, in particular, |=M
ψ′[σ[σ̄(t)/x]]. From Lemma 2.2.9(2) we get |=M ψ′[t/x][σ].

∃I : In this case ψ = ∃x:ψ′, and we have a derivation φ1, . . . , φn ⊢ ψ′[t/x]. Assume
M is a model and σ an environment with |=M φi[σ] for i ∈ {1, . . . , n}. By
the induction hypothesis we conclude |=M ψ′[t/x][σ]. Lemma 2.2.9(2) implies
|=M ψ′[σ[σ̄(t)/x]], and, hence, |=M ψ[σ].

∃E : In this case we have derivations φ1, . . . , φn ⊢ ∃x:ψ′ and Σ, ψ′ ⊢ ψ with Σ ⊆
{φ1, . . . , φn}. The variable condition implies that x does not occur free in ψ
and in any formula of Σ. Assume M is a model and σ an environment with
|=M φi[σ] for i ∈ {1, . . . , n}. By the induction hypothesis we get |=M ∃x:ψ′[σ].
We conclude that there is an a ∈ |M| with |=M ψ′[σ[a/x]]. Since x does not
occur free in the formulas in Σ we get |=M φ[σ[a/x]] for all φ ∈ Σ by Lemma
2.2.9(2). From the induction hypothesis we derive |=M ψ[σ[a/x]]. Again by
Lemma 2.2.9(2) we conclude |=M ψ[σ] since x does not occur free in ψ. �
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First-order languages quite often include a predicate symbol for equality =. The
main difference between the symbol = and other predicate symbols is that = usually
has a predefined interpretation, i.e., =M= {(a, a) | a ∈ |M|} for all models. We
refer to this variant as first-order logic with equality. An extended version of natural
deduction provides an introduction and elimination rule for =:

t = t =I
t1 = t2 φ[t1/x]

φ[t2/x]
=E

Notice that =I does not have an assumption, i.e., this rule is actually an axiom.



Chapter 3

Formal Semantics of Programming
Languages

In this chapter we will introduce a small imperative programming language. For this
language we present its operational semantics, i.e., an abstract machine executing
programs, as well as logical calculus to derive certain properties about programs.

3.1 IMP- An Imperative Programming Language

This chapter introduces the syntax of a small imperative programming language
IMP. The language is based on constant, function, and predicate symbols for the
natural numbers. In particular, we have the following sets of F n of function symbols
and P n of predicate symbols of arity n:

• F 0 consists of all symbols for positive and negative integers with zero,

• F 2 = {+,−, ∗},

• P 0 = {true, false},

• P 2 = {=, <=}.

As before we will use infix notation and the standard precedence rules in the exam-
ples.

In addition, we will use Boolean expressions within programs. These expression are
simply first-order formulas in our language that do not use quantifiers.

31
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In order to define the syntax of IMPwe will use a variant of grammar in BNF
(Backus-Naur form). Within the rules we use certain symbols as meta-variables for
syntactic entities, i.e., as so-called non-terminals. Concretely we use the following

• x, y, . . . are variables,

• a, a0, a1 range over arithmetic expressions, i.e., terms in the language above,

• b, b0, b1 range over boolean expressions, i.e., first-order formulas without quan-
tifiers,

• c, c0, c1 range over commands (or programs).

The commands are defined by:

c ::= skip|x:=a|c0; c1|if b then c0 else c1 fi|while b do c od.

Throughout the rest of this chapter we will fix the integers with the standard in-
terpretation for all function and predicate symbols as our model of interest. We
denote this model simply by Z. In particular, σ̄(a) is an integer for every arithmetic
expression a and environment σ.

3.2 Operational Semantics of IMP

Operational semantics of a programming language consists of specifying an abstract
machine executing programs. This corresponds to an implementation of the lan-
guage.

The language IMP will modify the contents of variables. Consequently, a program c
takes an environment σ, changes its content, and returns the modified environment
σ′. This fact will be denoted by

⟨c, σ⟩ → σ′.



CHAPTER 3. FORMAL SEMANTICS OF PROGRAMMING LANGUAGES 33

→ is called the evaluation relation. This relation is defined by the following rules:

(Skip) ⟨skip, σ⟩ → σ

(Assignment) ⟨x := a, σ⟩ → σ[σ̄(a)/x]

(Sequencing)
⟨c0, σ⟩ → σ′′ ⟨c1, σ′′⟩ → σ′

⟨c0; c1, σ⟩ → σ′

(Conditional 1)
⟨c0, σ⟩ → σ′

⟨if b then c0 else c1 fi, σ⟩ → σ′ iff |=Z b[σ]

(Conditional 2)
⟨c1, σ⟩ → σ′

⟨if b then c0 else c1 fi, σ⟩ → σ′ iff |=Z ¬b[σ]

(Loop 1) ⟨while b do c od, σ⟩ → σ iff |=Z ¬b[σ]

(Loop 2)
⟨c, σ⟩ → σ′′ ⟨while b do c od, σ′′⟩ → σ′

⟨while b do c od, σ⟩ → σ′ iff |=Z b[σ]

Several of the rules above have a side condition that has to be satisfied before the
corresponding rule can be applied.

Notice that the evaluation relation is a partial function. Let w be the program
while true do skip od, and σ be an arbitrary state. Then there is no state σ′

with ⟨w, σ⟩ → σ′.

Before we continue we want to show that our programming language is deterministic,
i.e., the relation on environments given by commands is, in fact, a partial function.

Lemma 3.2.1 Let c be a command, and σ be a state. If ⟨c, σ⟩ → σ1 and ⟨c, σ⟩ → σ2,
then σ1 = σ2 for all σ1, σ2 ∈ Σ.

Proof. We prove the lemma by structural induction on the derivation of ⟨c, σ⟩ →
σ1.

(Skip) In this case c is skip and σ = σ1. This implies that the derivation of
⟨c, σ⟩ → σ2 also uses the rule (Skip), and, hence, σ1 = σ = σ2.

(Assignment) In this case c is x := a for a location x and an expression a and
σ1 = σ[σ̄(a)/x]. The second derivation must also uses this rule, and we get
σ2 = σ[σ̄(a)/x], i.e., σ1 = σ2.
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(Sequencing) We have c is c0; c1 for commands c0 and c1. Furthermore, we have
derivations ⟨c0, σ⟩ → σ′

1 and ⟨c1, σ′
1⟩ → σ1 for a state σ

′
1. The second derivation

must use the same rule so that we get derivations ⟨c0, σ⟩ → σ′
2 and ⟨c1, σ′

2⟩ →
σ2 for a state σ′

2. By the induction hypothesis we first get σ′
1 = σ′

2 and then
σ1 = σ2.

(Conditional 1) In this case we have |=Z b[σ] and ⟨c0, σ⟩ → σ1. Again, the second
derivation must also use the rule (Conditional 1). We get a derivation ⟨c0, σ⟩ →
σ2. The induction hypothesis implies σ1 = σ2.

(Conditional 2) Similar to the previous rule.

(Loop 1) We have |=Z ¬b[σ] and σ1 = σ. This implies that the second derivation
uses (Loop 1) too, and we get σ1 = σ = σ2.

(Loop 2) We have |=Z b[σ] and derivations ⟨c′, σ⟩ → σ′
1 and ⟨c, σ′

1⟩ → σ1. As in
the previous cases the second derivation must also use (Loop 2) so that we
obtain derivations ⟨c′, σ⟩ → σ′

2 and ⟨c, σ′
2⟩ → σ2. By the induction hypothesis

we first get σ′
1 = σ′

2 and then σ1 = σ2. �

The next lemma is concerned with the termination of a loop.

Lemma 3.2.2 If ⟨while b do c od, σ⟩ → σ′, then there is an n ∈ N and σi for
i ∈ {0, . . . , n} with

1. σ0 = σ,

2. |=Z b[σi] and ⟨c, σi⟩ → σi+1 for i ∈ {0, . . . , n− 1},

3. σn = σ′ and |=Z ¬b[σn].

Proof. Let n be the number of applications of the (Loop 2) rule with a conclusion
that contains the program while b do c od. We show by mathematical induction
(for n) that there are environments as required by 1.-3. above. If n = 0, then the
derivation must be an application of the (Loop 1) rule. The environments σ0 = σ
satisfy the assertion. Now, assume we have n + 1 applications of (Loop 2) of the
form required. Then the last rule must be an application of (Loop 2). This implies
|=Z b[σ], and we get two derivations ⟨c, σ⟩ → σ′′ and ⟨while b do c od, σ′′⟩ → σ′.
The first derivation does not contain another (Loop 2) of the required form so that
the second derivation has n occurrences. By the induction hypothesis we obtain
environments with
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1. σ0 = σ′′,

2. |=Z b[σi] and ⟨c, σi⟩ → σi+1 for i ∈ {0, . . . , n− 1},

3. σn = σ′ and |=Z ¬b[σn].

These together with σ satisfy the assertion. �

3.3 Axiomatic Semantics of IMP

An axiomatic semantics for a programming language consists of a logic for deriving
properties of those programs. In our case we are interested in partial correctness
assertions. A partial correctness assertion for a command has the form:

{φ}c{ψ}

where φ, ψ are formulas and c is a command. Notice that the partial correctness
assertion is not a first-order formula. φ is called the precondition and ψ the post-
condition of the assertion. Informally a partial correctness assertion says that if
the precondition is satisfied and the program terminates, then the postcondition is
satisfied. Since the assertion does not make any statements about termination of
the command it is called a partial correctness assertion. Formally, we define the
satisfaction relation |= {φ}c{ψ}[σ] with respect to an environment σ, i.e., whether
the triple is true or not, by the following property:

If |=Z φ[σ] and ⟨c, σ⟩ → σ′, then |=Z ψ[σ
′].

As before we write |= {φ}c{ψ} if |= {φ}c{ψ}[σ] holds for all environment σ.

Now, we are going to present proof rules for partial correctness assertions. Those



CHAPTER 3. FORMAL SEMANTICS OF PROGRAMMING LANGUAGES 36

rules are often called Hoare rules, and the proof system Hoare logic.

(Skip) {φ}skip{φ}

(Assignment) {ψ[a/x]}x := a{ψ}

(Sequencing)
{φ}c0{χ} {χ}c1{ψ}

{φ}c0; c1{ψ}

(Conditional)
{φ ∧ b}c0{ψ} {φ ∧ ¬b}c1{ψ}
{φ}if b then c0 else c1 fi{ψ}

(Loop)
{φ ∧ b}c{φ}

{φ}while b do c od{φ ∧ ¬b}

(Consequence)
|= φ→ φ′ {φ′}c{ψ′} |= ψ′ → ψ

{φ}c{ψ}

Notice that the consequence rule relies on validity and not on the provability of two
implications. A partial correction assertion {φ}c{ψ} derived using the rules above
is called a theorem, and we denote that fact by ⊢ {φ}c{ψ}.

3.3.1 Soundness

It is not yet clear that theorems of the Hoare logic are valid actually valid partial
correctness assertions. The corresponding property is called soundness of the logic,
which we are going to prove in this section. Before we are able to do this we need
a lemma relating substitution and validity.

Now we are ready to establish the soundness of the proof rules.

Theorem 3.3.1 (Soundness) Let {φ}c{ψ} be a partial correctness assertion. Then
⊢ {φ}c{ψ} implies |= {φ}c{ψ}.

Proof. The proof uses structural induction on the derivation ⊢ {φ}c{ψ}.

(Skip): In this case ψ = φ and c = skip. Assume σ is an environment with
|=Z φ[σ]. Since ⟨c, σ⟩ → σ we get |=Z ψ[σ].
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(Assignment): Assume |=Z ψ[a/x][σ]. By Lemma 2.2.9 this is equivalent to the
statement |=Z ψ[σ[σ̄(a)/x]]. Since ⟨x := a, σ⟩ → σ[σ̄(a)/x] we conclude the
soundness of the assignment rule.

(Sequencing): In this case we have two derivations ⊢ {φ}c0{χ} (left subtree) and
⊢ {χ}c1{ψ} (right subtree). Now, assume |=Z φ[σ] and ⟨c0; c1, σ⟩ → σ′. From
the operational semantics we conclude that ⟨c0, σ⟩ → σ′′ and ⟨c1, σ′′⟩ → σ′

for some environment σ′′. The induction hypothesis for the left subtree shows
|=Z χ[σ

′′]. Using the induction hypothesis for the right subtree we get |=Z ψ[σ
′].

(Conditional): In this case c = if b then c0 else c1 fi and we have two deriva-
tions ⊢ {φ∧ b}c0{ψ} (left subtree) and ⊢ {φ∧¬b}c1{ψ} (right subtree). Now,
assume |=Z φ[σ] and ⟨c, σ⟩ → σ′. If |=Z b[σ], then we have |=Z φ ∧ b[σ]. Fur-
thermore, from the operational semantics we obtain ⟨c0, σ⟩ → σ′. Using the
induction hypothesis for the left subtree we get |=Z ψ[σ

′]. The case ̸|=Z b[σ],
i.e., |=Z ¬b[σ] follows analogously using the induction hypothesis for the right
subtree.

(Loop): In this case we have c = while b do c′ od and ψ = φ ∧ ¬b. Furthermore,
we have a subtree ⊢ {φ ∧ b}c′{φ}. Now, assume |=Z φ[σ] and ⟨c, σ⟩ → σ′. By
Lemma 3.2.2 there is an n ∈ N and σi for i ∈ {0, . . . , n} with

1. σ0 = σ,

2. |=Z b[σi] and ⟨c′, σi⟩ → σi+1 for i ∈ {0, . . . , n− 1},
3. σn = σ′ and |=Z ¬b[σn].

We show by mathematical induction that |=Z φ[σi] for all i ∈ {0, . . . , n}. If
i = 0, then σi = σ so that the assertion follows from the general assumption in
this case. For the induction step we have |=Z φ[σi] by the induction hypothesis
for i so that |=Z φ ∧ b[σi] follows from 2. since i + 1 ≤ n. Together with
⟨c′, σi⟩ → σi+1 and the induction hypothesis for the subtree ⊢ {φ∧ b}c′{φ} we
obtain |=Z φ[σi+1]. This completes the induction on i.

We conclude |=Z φ[σ
′] and |=Z ¬b[σ′] from 3. and the induction above. This

shows |=Z ψ[σ
′].

(Consequence): Assume |=Z φ[σ] and ⟨c, σ⟩ → σ′. From |=Z φ → φ′ we conclude
|=Z φ → φ′[σ], and, hence, |=Z φ

′[σ]. By the induction hypothesis we obtain
|=Z ψ

′[σ′]. Using |=Z ψ
′ → ψ we obtain |=Z ψ[σ

′]. �

The converse implication of the previous theorem is called completeness of the logic.
It says that every valid partial correctness assertion can be derived using Hoare
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logic. In other words the set of rules is sufficient for proving partial correctness of
programs. The proof of this theorem is out of the scope of this course.



Chapter 4

Algebraic Specifications

An algebraic specification is specification, i.e. a formal description, of (several) ab-
stract data types and their operations. In this approach all operations are functions
and their behavior is described by formulas.

4.1 Syntax: Signatures

First we want to introduce the notion of a signature. A signature contains the
syntactic material necessary for an algebraic specification.

Definition 4.1.1 A signature SIG = (S,C, F ) is a triple of three pairwise disjoint
sets:

• S, the set of sorts,

• C, the set of constant symbols, is the union of pairwise disjoint sets Cs of
constant symbols of sort s ∈ S,

• F , the set of function symbols, is the union of pairwise disjoint sets Fs1,...,sn;s

of function symbols with argument sorts s1, . . . , sn ∈ S and range sort s ∈ S.

Similar to set Term of terms in first order logic we define expressions or terms of a
signature. Hereby we have to take care that terms are well-typed, i.e. that function
symbols are just applied to terms of correct sort. As before we want to be able to
use variables to construct terms. Therefore, let X be a union of pairwise disjoint
sets Xs of variables of sort s ∈ S, called a collection of variables.

39
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Definition 4.1.2 Let SIG be a signature, and X be a variable collection. Then the
set T SIG

s (X) of terms of sort s ∈ S is defined by:

1. Xs ⊆ T SIG
s (X), i.e. every variable of sort s is a term of sort s,

2. Cs ⊆ T SIG
s (X), i.e. every constant of sort s is a term of sort s,

3. If t1 ∈ T SIG
s1

(X), . . . , tn ∈ T SIG
sn (X) and f ∈ Fs1,...,sn;s then f(t1, . . . , tn) ∈

T SIG
s (X).

The definition of the set of free variables FV (t) of a term t is obvious. t is called a
ground term if FV (t) = ∅, i.e. t does not contain any variable. Similar to the set
Term we define the substitution t[t′/x] of a term t′ ∈ T SIG

s (X) for a variable x ∈ Xs

in the term t. Notice that t′ and x must be of the same sort in order to guarantee
that t[t′/x] is well-typed. The details of the definition are left to the reader.

In order to specify the behavior of the functions of a signature we need a notion of
formulas. Formulas are constructed similar to the set FOL of first-order formulas.
As we did for terms above we have to make sure that all expressions are well-typed.

Definition 4.1.3 Let SIG be a signature, and X be a variable collection. Then the
set F SIG(X) of formulas is defined by:

1. If t1, t2 ∈ T SIG
s (X), i.e. terms of same sort, then t1 = t2 ∈ F SIG(X).

2. If φ ∈ F SIG(X), then ¬φ ∈ F SIG(X).

3. If φ1, φ2 ∈ F SIG(X), then φ1 ∧ φ2, φ1 ∨ φ2, φ1 → φ2 ∈ F SIG(X).

4. If φ ∈ F SIG(X) and x ∈ Xs, then ∀x ∈ s : φ,∃x ∈ s : φ ∈ F SIG(X).

The definition of the free variables of a formula is again obvious. Similar to first-order
logic we define the substitution φ[t/x] of a term t ∈ T SIG

s (X) for a variable x ∈ Xs

in the formula φ. Again t′ and x must be of the same sort in order to guarantee
that φ[t′/x] is well-formed. As above we leave the details of this definition to the
reader.

Definition 4.1.4 An algebraic specification SPEC = (SIG, X,E) consists of a sig-
nature SIG, a collection of variables X and set of formulas E ⊆ F SIG(X).
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4.2 Semantics: SIG-Algebras and Models

We start with the definition of a SIG-algebra providing an interpretation of all
syntactic entities of a signature. We are going to interpret function symbols by
partial functions. The reason is that a program implementing a an operation might
not terminate for certain input, i.e. is in fact a partial function.

Definition 4.2.1 Let SIG = (S,C, F ) be a signature. A triple A = (SA, CA, FA) is
called a SIG-algebra iff:

• SA = {sA | s ∈ S} is a set of non-empty sets sA for each sort s ∈ S, called
the base sets or domains of A.

• CA = {cA | c ∈ C} is a set of elements cA so that cA ∈ sA iff c ∈ Cs.

• FA = {fA | f ∈ F} is a set of partial functions fA so that fA : sA1 ×· · ·×sAn →
sA, i.e. fA is a partial function taking elements from sA1 , . . . , s

A
n as arguments

returning a value from sA, iff f ∈ Fs1,...,sn;s.

In order to compute the value of a term or the validity of a formula we need elements
for each variable (see state and interpretation). An assignment a : X →

∪
s∈S

sA is

a function mapping variable to elements in the domains of A so that a(x) ∈ SA iff
x ∈ Xs. If x ∈ Xs and u ∈ sA we denote by a[u/x] the assignment obtained from a
by changing the content for x to u.

Definition 4.2.2 Let SIG = (S,C, F ) be a signature, X be a collection of variables,
A be a SIG-algebra, and a be an assignment. Then the value VA(t)a ∈ sA of a term
t ∈ T SIG

s (X) in the SIG-algebra A and the assignment a is defined by:

• VA(x)a = a(x).

• VA(c)a = cA.

• VA((f(t1, . . . , tn)))a =


fA(VA(t1)a, . . . ,VA(tn)a) if VA(ti)a for 1 ≤ i ≤ n

and fA(VA(t1)a, . . . ,VA(tn)a)
are defined

undefined otherwise
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Notice that the value function is a partial function itself.

In the following a statement VA(t1)a = VA(t2)a always reads as follows: Both values
VA(t1)a and VA(t2)a are defined and they are equal or both sides are undefined.

The value of ground term t does not depend on the assignment since t contains no
variable. We omit a formal proof of this fact, and we write VA(t) instead VA(t)a
with an arbitrary assignment a.

A SIG-algebra may contain junk, i.e. elements that are not described by any ground
term of the signature. In computer science we are usually not interested in those
algebras. Main reason is that it is just possible to implement a data type with at
most countable many elements. Therefore, we call a SIG-algebra term generated
(or finitely generated) if for every sort s ∈ S and every u ∈ sA there is a term
t ∈ T SIG(X) with VA(t) = u.

Definition 4.2.3 Let SIG = (S,C, F ) be a signature, X be a collection of variables,
A be a SIG-algebra, and a be an assignment. Then the satisfaction relation (A, a) |=
φ of a formula φ ∈ F SIG(X) in the SIG-algebra A and the assignment a is defined
by:

• (A, a) |= t1 = t2 if VA(t1)a = VA(t2)a.

• (A, a) |= ¬φ if not (A, a) |= φ.

• (A, a) |= φ0 ∧ φ1 if (A, a) |= φ0 and (A, a) |= φ1.

• (A, a) |= φ0 ∨ φ1 if (A, a) |= φ0 or (A, a) |= φ1.

• (A, a) |= φ0 → φ1 if (A, a) |= φ0 implies (A, a) |= φ1.

• (A, a) |= ∀x ∈ s : φ if for all u ∈ sA we have (A, a[u/x]) |= φ.

• (A, a) |= ∀x ∈ s : φ if there is a u ∈ sA with (A, a[u/x]) |= φ.

We write A |= φ iff (A, a) |= φ for all assignments a and |= φ iff A |= φ for all
SIG-algebras A.

The definition above is very similar to the definition of the semantics of first-order
logic. The only remarkable difference is in the reading of = in the presence of partial
functions.

Definition 4.2.4 Let SPEC = (SIG, X,E) be an algebraic specification. Then:
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1. A SIG-algebra A is called model of SPEC if A |= φ for all φ ∈ E.

2. The semantics of SPEC is the class Gen(SPEC) of all term generated models
of SPEC.

The approach taken here is called loose semantics because we consider all possible
term generated models. Other approaches define the semantics of an algebraic spec-
ification by choosing a particular model, e.g. the initial or the terminal model. We
will study those models in the next section.

4.3 Homomorphisms, initial and terminal Models

Functions between structures of the same kind preserving the structure are usually
called homomorphisms. In terms of SIG-algebras we get the following definition.

Definition 4.3.1 Let SIG be a signature, and A and B be SIG-algebras. A family
H = (hs)s∈S of partial function hs : sA → sB is called a SIG-homomorphism from
A to B if

1. hs(c
A) = cB for all c ∈ Cs,

2. hs(f
A(u1, . . . , un)) = fB(hs1(u1), . . . , hsn(un)) for all f ∈ Fs1,...,sn;s and u1 ∈

sA1 , . . . , un ∈ sAn .

Notice that if the right hand side of the equation in 2. is not defined, then so must
the left hand side. We may visualize the second property by the following diagram
where we assume for simplicity that f is a unary function symbol:

sA
fA

//

hs
��

s′A

hs′
��

sB
fB

// s′B

If H is a SIG-homomorphism from A to B we write H : A→ B.

Lemma 4.3.2 Let SIG be a signature, A,B,C and D be SIG-algebras, and H :
A→ B, K : B → C and L : C → D be SIG-homomorphisms. Then we have

1. IdA := (idsA)s∈S, i.e. the family of the identity function on each domain, is a
SIG-homomorphism from A to A,
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2. K ◦H := (ks ◦ hs)s∈S is a SIG-homomorphism from A to C,

3. (L ◦K) ◦H = L ◦ (K ◦H), i.e. composition of SIG-homomorphisms is asso-
ciative,

4. IdB ◦ H = H = H ◦ IdA, i.e. the identity homomorphism is a left and right
neutral element for composition,

5. If every hs is bijective, then H
−1 := (h−1

s )s∈S is a SIG-homomorphism from B
to A and H ◦H−1 = IdB and H−1 ◦H = IdA.

Proof.

1. This is trivial since both sides of both equations in Definition 4.3.1 become
equal.

2. The assertion follows immediately from

(ks ◦ hs)(cA)
= ks(hs(c

A))

= ks(c
B) since H is a homomorphism

= cC , since K is a homomorphism

(ks ◦ hs)(fA(u1, . . . , un))

= ks(hs(f
A(u1, . . . , un)))

= ks(f
B(hs1(u1), . . . , hsn(un))) since H is a homomorphism

= fC(ks1(hs1(u1)), . . . , ksn(hsn(un))) since K is a homomorphism

= fC((ks1 ◦ hs1)(u1), . . . , (ksn ◦ hsn)(un)).

3. This follows immediately from the fact that composition of function is asso-
ciative.

4. This follows from the fact that the identity function on sA (resp. on sB) is a
right (resp. left) neutral element for composition.
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5. Consider the computations

h−1
s (cB)

= h−1
s (hs(c

A)) since H is a homomorphism

= cA,

h−1
s (fB(v1, . . . , vn))

= h−1
s (fB(hs1(u1), . . . , hsn(un))) for some u1, . . . , un ∈ sA

since each hsi is surjective

= h−1
s (hs(f

A(u1, . . . , un))) since H is a homomorphism

= fA(u1, . . . , un).

This shows that H−1 is a SIG-homomorphism from B to A. The remaining
properties follow immediately from the corresponding properties for each hs
and h−1

s . �

Notice that 1.-4. of the previous lemma shows that the structure of SIG-algebras with
SIG-homomorphisms is a category. Categories play an important rule theoretical
computer science and mathematics.

A SIG-homomorphism H so that H−1 exists is called a SIG-isomorphism. Two SIG-
algebras are called isomorphic (denoted by A ∼= B) if there is a SIG-isomorphism
H : A→ B (or equivalently K : B → A).

Lemma 4.3.3 Let SIG be a signature, A and B be SIG-algebras, H : A → B be a
SIG-homomorphism, and t a ground term. If VB(t) or hs(VA(t)) are defined, then
so is the other value and we have hs(VA(t)) = VB(t).

Proof. This is shown by structural induction on t.

t ≡ c: In this case we have VB(()t) = cB and VA(()t) = cA so that both values are
defined. From the definition of a SIG-homomorphism we conclude hs(VA(t)) =
hs(c

A) = cB = VB(t) and, in particular, that hs(VA(t)) is defined.

t ≡ f(t1, . . . , tn): If VB(t) is defined, we have VB(t) = fB(VB(t1), . . . ,VB(tn)). From
the induction hypothesis we conclude hsi(VA(ti)) are defined and VB(ti) =
hsi(VA(ti)) for 1 ≤ i ≤ n since the value of each subterm ti of t is defined in
B. We obtain VB(t) = fB(hs1(VA(ti)), . . . , hsn(VA(ti))). From the definition
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of a SIG-homomorphism we derive that hs(f
A(VA(t1), . . . ,VA(tn)) is defined

and equal to VB(t). We conclude

VB(t) = hs(f
A(VA(t1), . . . ,VA(tn)) = hs(VA(t)).

The latter also shows that hs(VA(t)) is defined.

If hs(VA(t)) is defined, then so is VA(t) and we have

hs(VA(t)) = hs(f
A(VA(t1), . . . ,VA(tn)).

From the definition of a SIG-homomorphism we conclude

hs(VA(t)) = fB(hs1(VA(t1)), . . . , hsn(VA(tn))).

In particular, all hsi(VA(t1)) with 1 ≤ i ≤ n are defined. From the induction
hypothesis we conclude that VB(ti) is defined and that hsi(VA(t1)) = VB(ti)
for all 1 ≤ i ≤ n. This implies hs(VA(t)) = fB(VB(t1), . . . ,VB(tn)) = VB(t).
The latter also shows that VB(t) is defined. �

We get the following lemma as an immediate consequence from the previous one.

Lemma 4.3.4 Let SIG be a signature, A a term generated SIG-algebra, and B be
an arbitrary SIG-algebra. Then there is at most one SIG-homomorphism from A to
B.

Proof. Assume H,K : A → B are SIG-homomorphisms. We show that
hs(VA(t)) = ks(VA(t)) for all ground terms t. The assertion then follows from the
fact that A is term generated. Notice that the equality stated above is an equal-
ity of partially defined values. We have to show that if hs(VA(t)) is defined, then
ks(VA(t)) is defined and hs(VA(t)) = ks(VA(t)). Assume hs(VA(t)) is defined. From
Lemma 4.3.3 we obtain that VB(t) is defined and that hs(VA(t)) = VB(t). Applying
Lemma 4.3.3 again we derive that ks(VA(t)) is defined and that ks(VA(t)) = VB(t).
We conclude hs(VA(t)) = ks(VA(t)). �
One may define a pre-order on SIG-algebras by A ≼ B iff there is a homomorphism
from B to A. From the previous lemma it follows that if A ≼ B and B ≼ A, then
A ∼= B (see also Theorem 4.3.6). Among the models of a specification we want to
identify the least and the greatest element (if they exist).

Definition 4.3.5 Let SPEC be an algebraic specification. Then we call
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• a (term generated) model I from Gen(SPEC) initial if there is a SIG-homo-
morphism from I to any model in Gen(SPEC).

• a (term generated) model T from Gen(SPEC) terminal if there is a SIG-
homomorphism from any model in Gen(SPEC) to T .

The notions of initial and terminal objects are general notions in category theory.
Usually it requires for initial objects I that there is exactly one morphism to every
other object of the category. In our case we are able to drop the uniqueness property
since we have already shown that there at most one SIG-homomorphism between
term generated SIG-algebras. However, initial and terminal objects are unique up
to isomorphism.

Theorem 4.3.6 Let SPEC be an algebraic specification. Then we have:

1. An initial model is unique up to isomorphism, i.e. if I1 and I2 are initial, then
I1 ∼= I2.

2. A terminal model is unique up to isomorphism, i.e. if I1 and I2 are initial,
then I1 ∼= I2.

Proof.

1. Assume I1 and I2 are initial models. Then there is a SIG-homomorphism
H : I1 → I2 since I1 is initial and a SIG-homomorphism K : I2 → I1 since
I2 is initial. Then K ◦ H is a SIG-homomorphism from I1 to I1 by Lemma
4.3.2(2). The same lemma also shows that IdI1 is a SIG-homomorphism from
I1 to I1. From Lemma 4.3.4 we conclude K ◦H = IdI1 . Analogously we obtain
H ◦K = IdI2 . This shows that we have hs = k−1

s for every sort s ∈ S, i.e. that
H (and K) is an isomorphism.

2. Analogously to 1. �

In the presence of partial operations, i.e. function symbols are interpreted by partial
functions, a terminal model does usually not exist. For this reason we want to
concentrate on initial models.

In the remainder of this section we want to find sufficient properties of the algebraic
specification so that initial model exists. Those properties are essentially properties
of the set E of axioms. First we consider the case of E = ∅.
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Definition 4.3.7 Let SIG = (S,C, F ) be a signature. Then we define the term
algebra Term by

• sTerm is the set of ground terms of sort s,

• cTerm = c, i.e. the interpretation of a constant symbol is the symbol itself,

• fTerm(t1, . . . , tn) = f(t1, . . . , tn) for all f ∈ Fs1,...,sn;s and t1 ∈ sTerm1 , . . . , tn ∈
sTermn .

Theorem 4.3.8 Let SIG be a signature. Then Term the initial model of (SIG, ∅).

Proof. Let A be a term generated SIG-algebra. Then we define a family of
functions H : Term → A by

hs(t) := VA(t).

Let c ∈ Cs be a constant symbol. Then we have hs(c
Term) = hs(c) = VA(c) = cA.

Now assume f ∈ Fs1,...,sn;s and t1 ∈ sTerm1 , . . . , tn ∈ sTermn . Then

hs(f
Term(t1, . . . , tn)) = hs(f(t1, . . . , tn))

= VA(f(t1, . . . , tn))

= fA(VA(t1), . . . ,VA(tn))

= fA(hs1(t1), . . . , hsn(tn)).

This completes the proof. �
Notice that the above theorem is not restricted to the class of term generated SIG-
algebras. For the more general version we have to show that the SIG-homomorphism
defined above is unique. But this follows immediately since Term is term generated.

With no axioms available the term model is the initial model of the specification.

In order to model the effect of certain axioms on the term model we need the notion
of a congruence.

Definition 4.3.9 Let SIG be a signature, and A be a SIG-algebra. We call a family
≈= (∼s)s∈S of equivalence relations ∼s on sA, i.e. ∼s⊆ sA × sA, a SIG-congruence
on A if

1. u1 ∼s1 v1, . . . , un ∼sn vn and fA(u1, . . . , un) is defined implies that fA(v1, . . . , vn)
is defined and fA(u1, . . . , un) ∼s f

A(v1, . . . , vn),
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2. u1 ∼s1 v1, . . . , un ∼sn vn and fA(v1, . . . , vn) is defined implies that fA(u1, . . . , un)
is defined and fA(u1, . . . , un) ∼s f

A(v1, . . . , vn),

for all f ∈ Fs1,...,sn;s.

Given a SIG-congruence we are able to construct a new SIG-algebra based on the
equivalence classes of the congruence.

Definition 4.3.10 Let SIG be a signature, A be a SIG-algebra, and ≈ be a SIG-
congruence on A. Then the quotient algebra A/ ≈ is defined by

• sA/≈ = {[u]∼s | u ∈ sA}, i.e. the elements of sA/≈ are the equivalence classes
of elements of sA with respect to ∼s,

• cA/≈ = [cA],

• fA/≈([u1], . . . , [un]) = [fA(u1, . . . , un)].

Notice that fA/≈ is well-defined because ≈ is a SIG-congruence.

Theorem 4.3.11 Let SPEC = (SIG, E) be an algebraic specification. Then the
family of relation ≈= (∼s)s∈S on the term model Term defined by

t1 ∼s t2 iff VA(t1) = VA(t2) for all A ∈ Gen(SPEC)

is a SIG-congruence on Term.

Proof. Assume t1 ∼s1 t′1, . . . , tn ∼sn t′n, i.e. VA(t1) = VA(t
′
1), . . . ,VA(tn) =

VA(t
′
n) for all A ∈ Gen(SPEC). Since both fTerm(t1, . . . , tn) = f(t1, . . . , tn) and

fTerm(t′1, . . . , t
′
n) = f(t′1, . . . , t

′
n) are defined it remains to show that f(t1, . . . , tn) ∼s

f(t′1, . . . , t
′
n). Therefore, let A ∈ Gen(SPEC). Suppose VA(f(t1, . . . , tn)) is not

defined. Then either VA(ti) for an i ∈ {1, . . . , n} is not defined or fA is not de-
fined at VA(t1), . . . ,VA(tn). In the first case we conclude that VA(t

′
i) is also not

defined, and in the second case that fA is not defined at VA(t
′
1), . . . ,VA(t

′
n) because

VA(t1) = VA(t
′
1), . . . ,VA(tn) = VA(t

′
n). This implies that VA(f(t

′
1, . . . , t

′
n)) is not

defined. The converse implication follows analogously. Now assume both values are
defined and compute

VA(f(t1, . . . , tn)) = fA(VA(t1), . . . ,VA(tn))

= fA(VA(t
′
1), . . . ,VA(t

′
n))

= VA(f(t
′
1, . . . , t

′
n)).
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This completes the proof. �
If the quotient algebra of Term versus the SIG-congruence defined above is again a
model, then it is an initial model.

Theorem 4.3.12 Let SPEC = (SIG, E) be an algebraic specification, and ≈ the
SIG-congruence from Theorem 4.3.11. If Term/ ≈∈ Gen(SPEC), then Term/ ≈ is
an initial model.

Proof. Suppose A ∈ Gen(SPEC). We have to show that there is a SIG-
homomorphism from Term/ ≈ to A. As in the case of E = ∅ we use the value
function in A and define hs([t]) = VA(t). Notice that hs is well-defined since t ∼s t

′

is equivalent to VA(t) = VA(t
′) by the definition of ∼s.

Let c ∈ Cs be a constant symbol. Then we have hs(c
Term/≈) = hs([c]) = VA(c) = cA.

Now assume f ∈ Fs1,...,sn;s and [t1] ∈ s
Term/≈
1 , . . . , [tn] ∈ s

Term/≈
n . Then

hs(f
Term/≈([t1], . . . , [tn])) = hs([f

Term(t1, . . . , tn)])

= hs([f(t1, . . . , tn)])

= VA(f(t1, . . . , tn))

= fA(VA(t1), . . . ,VA(tn))

= fA(hs1([t1]), . . . , hsn([tn])).

This completes the proof. �
If E is a set of equations, i.e. every formula φ in E is of the form

∀x1 ∈ s1 : . . . ∀xn ∈ sn : t=t
′,

then we are able to show Term/ ≈∈ Gen(SPEC). A formal proof of this fact is left
as an exercise.

The previous statement can also be formulated as follows: If the set of axioms
consists just of equations, then an initial model of the specification exists. It can be
computed as quotient algebra of the term algebra.


