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1 Introduction

Rough set data analysis (RSDA), developed by Z. Pawlak and his co—workers in the early 1980s
[47] has become a recognised and widely researched method with over 1100 publication to date [54,
Appendix 1]. The conceptual foundation of the RSDA model is the consideration that all perception
is subject to granularity, and that the ability to classify is at the root of human intelligence:

“Our claim is that knowledge is deep—seated in the classificatory abilities of human be-
ings and other species. For example, knowledge about the environment is primarily man-
ifested as an ability to classify a variety of situations from the point of view of survival

in the real world. .. Classification on more abstract levels, seems to be a key issue in
reasoning, learning and decision making, not to mention that in science classification it is
of primary importance t00.” [48]

The main thrust in current applications of rough set theory are

e Attribute reduction,
e Rule generation,

e Prediction.

*The ordering of authors is alphabetical, and equal authorship is implied.



Table 1: The position of RSDA in Soft Computing [35]

H Microscopic, primarily numeric | Macroscopic, descriptive and numelric

Deductive Chaos theory Fuzzy methods
Inductive | Neural networks, genetic algorithms RSDA

Many examples of applications of RSDA to process control, economics, medical diagnosis, biochem-
istry, environmental science, biology, chemistry psychology, conflict analysis and other fields can be
found in [30, 54, 69]. For further information of developments up to 1999, we recommend the list
given in [25].

RSDA is generally regarded as part of the “Soft Computing” paradigm, and in a recent book [35],

it is treated as one of the five key “non traditional Al areas” (Table 1). However, while other soft
methods require additional model assumptions such as the representability of the collected sample,
prior probabilities, fuzzy functions, or degrees of belief, RSDA is unique in the sense that it is“non

— invasive” i.e. that it uses only the information given by the operationalised data, and does not rely
on other model assumptions. In other words, instead of using external numbers or other additional
parameters, rough set analysis utilises solely the structure of the given data:

“The numerical value of imprecision is not pre-assumed, as it is in probability theory of
fuzzy sets - but is calculated on the basis of approximations which are the fundamental
concepts used to express imprecision of knowledge\s a result we do not require that

an agent assigns precise numerical values to express imprecision of his knowledge, but
instead imprecision is expressed by quantitative concepts (approximations). [48]

In this sense, RSDA, as a measurement process, can be regarded as “nominal scaling” [74]. In order to
position RSDA in the data modelling process, we follow [19] in assuming that a data model consists
of

1. The “acting subject”.
2. A domainD of interest chosen by the agent.

3. An empirical systeng’, which consists of a body of data and relations among the data, and a
mappinge : D — &, calledoperationalisation

4. A numerical modeM, and a mapping: : £ — M, calledrepresentation

As we can see in Fig. 1, the acting subject with her/his objectives is the central part of the modelling
process, and the first, and, possibly, major factor of subjectivity: Agents choose an operationalisation
according to their objectives and their subjective view of the world. This is a fact which is encountered
by any method of data analysis: Operationalisationis necessary to be able to talk about a domain, but it
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Figure 1: The data modelling process
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raises two questions; first, whether the elements and relations of the result of the operationalisation, i.e.
the empirical modet, are representative for the domdn(consistency problem), another whether
the choice of features covers the relevant aspects (@bmpleteness problem).

The next step, the numerical models, are a reduction of the empirical model, and thus of the domain of
interest; going from the empirical to the numerical model, often results in further decontextualisation.
We invite the reader to consult [83, Section 2] for further comments on the relationship of RSDA to
numerical models.

RSDA takes place on the level of the empirical model, and the main motto of RSDA is
(1.1) LET THE DATA SPEAK FOR THEMSELVES

An operationalisation of the type
OBJECT > ATTRIBUTE(S)

relationship in form of a data table is supposefi to be given (with all its underlying assumptions), and
subsequent analysis uses only the information contained in this table. This is in contrast to most sta-
tistical (or other) analysis methods. Even the bootstrap technique, which is discussed in the rough
set context in [75] needs additional model assumptions, because one has to suppose that the percent-
ages of the observed equivalence classes are representative estimators of the latent probabilities of the
equivalence classes in the population.

We shall see below that dependencies and decision rules are always extracted (or learned) from ex-
isting systems, and they are not part of the design process as is the case, for example, with relational
databases.

Since the field of RSDA has grown rapidly within the past five years, and there are many ramifications
and generalisations, it is impossible to describe in detail every thread in the area, and we will have to
be content to outline the major issues and developments.

The paper is structured as follows: We will start by describing the basic RSDA model, its mathematical
foundations, and its knowledge representation in some detail. We will then describe how RSDA
tackles major issues of data analysis:



e Attribute reduction and rule generation,
¢ Significance testing and rule validation,
¢ Model selection,

¢ Data discretisation, including grouping of qualitative values.

This is followed by a brief description of further developmentin RSDA. We conclude with a summary
and an outlook to further development.

2 The basic model of RSDA

The mathematical machinery of RSDA is derived from the assumption that granularity can be ex-
pressed by partitions and their associated equivalence relations on the set of objects, alsaltsiled
cernability relationdn this context.

Suppose that’ is a nonempty set. partitionor classificatiorof U is a family? of nonempty subsets
of U such that

(2.1) Each element of/ is contained in exactly one element@f

Recall that arequivalence relatiofl on a selU is a reflexive, symmetric, and transitive binary relation
onU,i.e. forallz,y,z € U, we have

0z, Reflexivity
8y impliesyfz, Symmetry
0y andyfz imply 26z. Transitivity

Each partitiori? induces an equivalence relatiéron U by setting

(2.2) xy < x andy are in the same class &f.

Conversely, each equivalence relattbon U induces a partitiof® of U whose classes have the form
Ox = {y € U : 20y}.

By some abuse of language, we also speak of the classes of an equivalence relation when we mean
the classes of its associated partition, and ¢alihe class of: modulof. The interpretation in rough

set theory is that our knowledge of the objectdiirextends only up to membership in the classes of

#, and our knowledge about a sub3eof U is limited to the classes #fand their unions. This leads

to the following definition: ForX' C U, we say that

(2.3) X E| {02 : 2 C X}



Figure 2: Rough approximation

Boundary of Set X
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Difference of upper and
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is thelower approximatioror positive region of Xand

(2.4) X U{Ow rr e X}

is theupper approximationor possible regiorof X'.

If X C U isgiven by a predicat®& andz € U, then

1. x € X means that certainlyhas property’,
2. z € X means that possiblyhas property’,

3. z € U\ X means that definitelydoes not haveropertyP.

Thearea of uncertaintgxtends over
X\ X,

and thearea of certaintyis
XU-X.

A rough subseof U is a pair(X, X}, whereX C U. A subsetX of U is calleddefinablef X = X.

In this case X is empty or a union of equivalence classe# 0énd the area of uncertaintyfls An
equivalent — and, possibly, more transparent — way of describing the information givén #yis

to consider pairg.X, —X); this gives the area of positive certainty in the first component, and that
of negative certainty in the second one, and it is closer to the machine learning situation of positive
and negative examples. It also avoids certain statistical difficulties which arise when using the upper
approximation.

It has been shown that the collection of all rough subsets abn be made into a regular double
Stone algebra [6, 10, 24, 56], and that these algebras can serve as semantic models for three valued
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Table 2: Fisher’s Iris data [18]

Sepal Sepal Petal Peta

S6 67 30 50 17
st 64 28 56 22
<143 other specimen>

ObIeCt) |ongth width length  width 2S5
o | 50 33 14 2 | 1
o | 46 34 14 3| 1
s | 65 28 46 15| 2
s | 62 22 45 15| 2

3

3

tukasiewicz logic [9]. The connections between algebra and logic of rough set systems are explored
in some detail in [45]. A different logical approach to the rough set model is given by [41] and [31]:
There, the lower approximation is considered a necessity opératand the upper approximation a
possibility operatot©.

It may be also worthy of mention that RSDA can be interpreted in Shafer's evidence theory [60] in
such a way that beliefs are obtained internally from the lower approximation of a set, and plausibility
from its upper approximation [61, 63].

3 Knowledge representation

Knowledge representation in RSDA is done via information systems, which are a form of data table.
More precisely, ainformation systeri = (U, Q, V,, f,),eq consists of

1. Afinite setlU of objects,
2. Afinite set(2 of attributes,
3. For eachy € Q
o A setV, of attribute values,

¢ Aninformation functionf, : U — V.

Table 2 which shows part of the famous Iris data [18] is an example of such a sySteansists of
150 specimen of Iris flowers; there are five attributes, nanselyal length, sepal width, petal length,
petal width and an attributelass The setd/, of attribute values for the first four attributes consist of
lengths, measured in millimetres, and the attrilnlésstakes its values from the sét, 2, 3}, which



code the specieSetosa, Versicolor, VirginicaWe think of the descriptof,(z) as the value which
objectx takes at attribute; thus, for example,

fsepal Iengtlﬁsl) =50, fpetal Iengtr{sz) = 14, fclass(SS) =2

What we have above is, in fact,decision systemBesides four independent features, there is a
dependent decision attributkass

We observe that in information systems, each value) is unique, and there can be no missing
values. A generalisation of the information system above arenthié—valued information systeims
introduced in [44]. There, the information functions take on set values, i.e. foeadhandz € U,

fo(z) C V4.

These can cater for non—deterministic information and null values. We refer the reader to [43] for a
more detailed description of multi-valued information systems and their algebraic and logical prop-
erties.

4  Attribute reduction and rule generation

The discovery of data dependencies and the reduction of the number of attributes is one of the major
topics in data mining. As we shall see below, RSDA offers purely structural methods to achieve both.

Inthe sequel, we let = (U, Q, V,, f,),eq be ageneric information system. As a running example, we
shall use the decision system of credit card applications shown in Table 3. We-ldt, ¢, ¢3, ¢4},
and consider the decision attribute separately.

Table 3: Credit card applications

Condition attributes
Applicant “ € e ot . d .
Account | Balance| Employed| Monthly outgoing|| Decision
ay bank | medium yes low accept
s bank low yes high reject
as none low yes medium reject
g other high yes high accept
as other | medium yes high reject
ag other high yes low accept
arz bank high no medium accept
as none low no low reject

Attribute reduction in RSDA is achieved by comparing equivalence relations generated by sets of
attributes. With eacly C 2 we associate an equivalence relatéignon U by

z0gy ifand only if f,(z) = f,(y) forall ¢ € Q.
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Intuitively, z8qy if the objectsz andy are indiscernible with respect to the values of their attributes
from (). Itis not hard to see that fa?, Q C Q

P C @ impliesfg C 0p.
Thus, the finest equivalence relation obtained this way; jsandé is the universal relatiofy x U.

The partition off, in our system of Table 3 (without the decision attribd}és the identity relation;
all eight applicants are pairwise distinguishable by the given attributes.

We use these equivalence relations to express dependency among attribute sets in the following way:
Suppose thaP, Q C Q; P is calleddependent on @ written as) = P —if 8o C 6p. In this

case, every class @f is a union of classes @k, so that membership in a classéf determines
membership in a class éf. In other words, the partition df induced byP can be expressed by the
partition induced byy, so that the world according 8 is coarser than the world according@o If

P = {p}, we usually just writ&) = p.

AsetP C () C Qis called areduct of(), if
1. 0p =g,
2. For each? C P we havefir # 0.

In other words,P C @ is a reduct of), if P is minimal among all subsets 6¢J which generate

the same classification &}, the attributes within a reduct are independent, and none of them can be
omitted for the description df. Reducts produce deterministic rules. It is not hard to see, that each

@ C Q has a reduct, though this is usually not unique. The intersection of all redu€tssofalled

the core of(), written ascore(Q)), and the elements of the core@fare calledndispensabldor Q).

If ¢ € @), andg is not an element of any reduct f, then we cally redundant for. If @@ = 2 we

just speak ofeducts ofzZ, core ofZ etc. The set of all reducts @f is denoted byRed(Z). Reducts
correspond to keys of a relational database; consequently, as was pointed out in [57] the problem of
finding a reduct of minimal cardinality is, in general, NP-hard, and finding all reducts has exponential
complexity [66].

A transparent method to find the core and the reducts of an information sgstéandiscernibility
matrices was given in [66]: Definediscernibility functions : U x U — 2 by
def

(4.1) 6(a,b) = {q € Q: fola) # fo(b)}.

The functions leads to a pseudo-metric, since

4.2) a = bimplies|é(a,b)| = 0.
(4.3) |0(a, b)| = |6(b, a)].
(4.4) |0(a, )] < 16(a, b)| 4 |6(b, ).

If 8¢, is the identity, then the converse of (4.2) holds as well, and the assigdméht— |5(a, b)| is
a metric.

Now,



Proposition 4.1. [66]

1. The core of is the set

{q € Q:5(a,b) = {q} forsomeu,b e U}.

2. P C Qisareduct off if P is minimal with respect to the property
Pno(a,b)#0

forall a,b € Q, d(a,b) # 0.

The discernibility matrix of the system of Table 3 without the decision attribute is given in Table 4.

Table 4: Discernibility matrix

BEREREE 4 5 6 7 8

Tl ——|co,eq | c1y09,0q | C1y09,04 C1,C4 C1,C2 C2,C3,C4 C1,€2,C3
2| —= - C1,€4 C1,C2 C1,C2 C1,C2,C4 C2,C3,C4 C1,€3,C4
3| —1] —— —= €1,C2,Cq4 | €1,C2,Cq4 | C1,C2,C4 | C1,C2,C3 €3, C4

4] —— - - - C2 Cq C3,C4 C1,C2,C3,C4
5| —— - - - - C2,C4 C1,€2,€3,C4 | €1,C2,C3,C4
6| ——1| —— —= —= —= —= 1, €3, C4 1, C2,C3
Tl —= - - - - - €1, C2, €4

The entrieg4, 5, (4, 6) show that the core of the systefis {c;, ¢4}, and(5, 6) shows that this the
also the only reduct cf.

The relations among the classes of the equivalence relations associated with attribute sets can be used
to generate decision rules; for notational simplicity, we suppose that we hav@a=sét;,, ..., ¢,}

of independent attributes, and a single dependent attribukgs is no restriction of generality, since

we are using only the partition information &f, and thusd can be a “composite attribute”, obtained

from someP C €.

We assume that the partition induceddayis { X1, ..., X}, and the oneinduced 8y is { Y1, ... , Y;}.
With eachX; we associate the séf; = {Y; : X; NY; # 0}. Since the set¥7, ..., Y; partitionU,

we see that
(4.5) If z € X;, thenz € Yj or...orz €Y, .,

whereM; = {Y},,...Y;,  }. Now recall that each class; of 6, corresponds to a feature vector
(aj)1<i<n, Wherez € X; ifand only if f, (z) = a; and... and f,, (z) = a,; similarly, z € Y; if



and only if f;(z) = b; for someb; € V. If we translate condition (4.5), this leads to a rule of the
form

(4.6) If fo, (z) = ar and... andf,, (z) = a,, thenfq(z) = bj, or... or fa(z) = bj, .

It follows that RSDA rules are able to express deterministic as well as indeterministic information: If
some classX; of 6 intersects exactly ong;, thenX; C Y;, and the value off of anyz € X; is
uniquely determined; otherwisé,;(z) may be in any class contained M;, and we have a proper
disjunction on the right hand side of (4.6). A classis calleddeterministi¢if it is contained in some

Y;, otherwise, we call itndeterministic If all classesX; are deterministic, then, clearlgy C 6,

andd is dependent oy. We will write () — d for the collection of rules (4.5), and, with some abuse
of language call) — d a rule of the information systefh

Let us consider again our example of Table 3Y1& {c;} andd is the decision attribute, we have
Xy =A{ar,as}, Xo ={az, a3, as}, X5 = {a4,aq,ar}
Y1) = {a1, a4, a6, a7}, Yo = {ag, as, as, as}.

X5 and X3 are deterministic classes, whilg is not, and we obtain the following decision rules with
respect tai:

4.7 If bank balance is medium, then accept or reject
(4.8) If bank balance is low, then reject.
(4.9) If bank balance is high, then accept.

By taking into account attribute, we can splitX; in 6., .,, and refine rule (4.7) by

(4.10) If bank balance is medium and monthly expense is low then accept, otherwise, reject.
By usinge; ande,, we obtain another rule system:

(4.11) If bank balance is medium and account is bank then accept, otherwise, reject.

We refer the reader to [21, 22, 62, 71, 85] for various methods to generate RSDA rules.

5 Approximation measures

Even though RSDA is a symbolic method of analysis, it uses counting information provided by the
classes of the equivalence relations under consideration. The inherent statistics of an approximation
space(U, #) are the twaapproximation functions

def | X[+ [=X]
(5.2) ag(X) ¥ % (for X # (),
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see [48], p. 16ff. I is understood, we shall usually omit the subscripts.

v6(X) is the percentage of objectsi@fwhich can be correctly classified with the knowledge given by

¢ as being inX or not, whileay(.X') expresses the degree of completeness of our knowledye tif

was shown in [15] that the approximation is a manifestation of the underlying statistical principle of
RSDA, namely, th@rinciple of indifferenceWithin each equivalence class, the elements are assumed
to be randomly distributed.

We can generalise the approximation functions to partitions with more than two classes in the follow-
ing way: As a measure of thguality of an approximationf a partition? by a set) of attributes we
definey (@ — P) by

2 xep 1Xg,]

(5.3) Q= P) = SR

In caseP is induced bydp for someP C Q, we will write v(¢) — P) instead ofy(¢) — P). If

X e P, thenz% is the set of all elements oY that are correctly classified with respect to the
attributes i), andv(Q — P) is the ratio of the number of all certainfp — classified elements &f
with the information provided by the attributesdnto the total number of elements bf. Note that

Q) = Pimpliesy(Q — P) =1.

Suppose that fo), P C Q, ) is a reduct ofP, so thatQ) = P, and@Q \ {¢} & P foranyq € Q.

In rough set theory, the impact of attributen the fact that) = P is usually measured by the drop
of the approximation function from 1 to v(@Q \ {¢} — P): The larger the difference, the more
important one regards the contributiongato the rule [48, p.58].

While the approximation quality measures the global classification success in terms of the equiv-
alence classes, one can use the same principle for elements andrdefjhenembership functions
[49]: For eachX C U, letux : U — [0, 1] be a function defined by

(5.4) () = 220X

|0z|
Itis easy to see thatforal,Y C U,

iff v € X,
:9) { iff 2 gz X,
(5.6) ponx () =1 —
(5.7) pxoy (¢) > aX(NX(x)vﬂY(x))v
(5.8) pxny (2) < min(px (), py (2)).

The cases, where equality holdsin (5.7) and (5.8) - and when, consequeniya fuzzy membership
function, as well as an efficient algorithm to compute rough membership functions are given in [49].
Unlike fuzzy membership, thex values are obtained from the internal structure of the data, and no
outside information is needed.
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Rough sets and fuzzy sets are geared towards different situations: While at the heart of RSDA is the
concept of granularity, mathematically expressed by classes with crisp boundaries, within which no
information is available, fuzzy sets describe vagueness of a concept where boundaries among classes
are ill-defined. Frameworks to combine the two points of view have been proposed, among others, in
[7, 70, 82]. Hybrid systems, where RSDA is used as a pre-processing device for fuzzy methods have
been given, for example, in [50, 72]

6 Rule significance and validation

In the early development of RSDA, the static point of view was predominant: Reducts which were
obtained from one sample of data were studied, along with the contribution of single attributes, mea-
sured by the drop of the approximation quality, e.g. [68, 73]. Over time, i&dame clear, however,

that for prediction, i.e. the classification of new elements, these tools were not well suited and other
measures had to be found.

“The rough set methods developed so far are not always sufficient for extracting laws
from decision tables. The set of all decision rules generated from all conditional attributes
can be too large and/or can contain many chaotic rules not appropriate for unseen object
classification” [1].

Indeed, a re-analysis of the results of [68] and [73] showed that not all the claimed rules were useful,
and that some potentially valuable rules were overlooked [12].

Any rule based system faces the problemsuté significanceandrule validity. Whereas significance

tests measure the probability that a rule is due to chance, i.e. random behaviour, validation of a rule
system investigates, how well the particular hypothesis, expressed by the rule, is replicable. Clearly,
both problems need to be addressed before RSDA can claim to be a fully fledged instrument for data
analysis and prediction. Of particular interest are those significance testing and validation procedures
which stay within the non—invasive RSDA paradigm of (1.1), and do not rely on extra model assump-
tions.

One might suppose that theapproximation quality is a suitable tool, since it measures classification
success; however, it has been shown in [12], that a high approximation quality is not a guarantee
that the result of a rough set analysis is either significant or valid. If, for example, rough set analysis
discovers a rule of the for) = d, and if the rule is based on only a few observations, classification
may be due to chance. A similar observation can be made with regard to the influence of one attribute
in a set of independent attributes.

A solution of the significance problem was given in [12] on the basis of randomisation procedures.
These are particularly appropriate to RSDA as a hon-invasive method, since they do not require any
representability assumption and use only the information of the given sample [17, 33]. A special case
of the procedures developed in [12] is the investigation of the contribution of single attributes on a
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rule ) — d; an attributey € () is calledconditionally casualif, loosely speaking, there are only a
few observations in which is needed to prediet. Removing conditionally casual attributes reduces
the overfitting of data which is common in the traditional RSDA approach based on

Significance of a rule is a minimal but necessary requirement for evaluating the predictive power of a
rule @ — d. To test the prediction quality of a rule, additional validation is needed. Rule validation

in RSDA is usually performed by customary cross—validation methods. It can be seen, however, that
the jackknife validation (“leave-one-out”) may result in an overly optimistic estimation of prediction
success [3]. Another problem with this method, particular to RSDA, is the case when the element
which is left out can only be predicted by its own rule. In this case, invasive techniques such as
the adoption of metric information (Hamming distance, Euclidean distance etc.) need to be applied,
which assume more than the data itself tell us, and are outside the RSDA paradigm (1.1).

A non-invasive validation technique is based on a significance test [12]. The reasoning behind the
method is the assumption that prediction success should not depend on the way the data set is split up
into a training and a testing set: A new attribute SPLIT is added and randomly distributed over half
of the data set. If SPLIT i& significant in more tham - 100% of the simulated data sets, then the
splitis not random, and the prediction success is dependent on the choice of training and testing set.
It follows that the rule cannot be validated.

7 Model selection

Attribute reduction is an inherent feature of RSDA, and usually has no unique solution. If several
attribute sets exist from which prediction is possible, then the problem arises which of these are most
suitable by some predefined criterion. We will present two very different recent methods of model
selection. The first one is selection Bynamic reduct§l]:

“The underlying idea of dynamic reducts stems from the observation that reducts gener-
ated from information systems are unstable in the sense that they are sensitive to changes
in the information system introduced by removing a randomly chosen set of objects. The
notion of dynamic reduct encompasses the stable reducts, i.e. reducts that are the most
frequent reducts inrandom samples created by subtables of the given decision table” [65].

ForZ = (U,Q,V,, f,,d),eq andU’ C U’, we callZ’ = (U’,Q, V,, f,, d),eq asubsystem cf. If F
is a family of subsystems df, then

(7.1) DRed(I,F) = Red(T)n({J : J € F}

is called thdamily of F-dynamic reducts df. It is easily seen that in most cases, this is too restrictive
for practical use, and thus, a threshold is introduced:OLet ¢ < 1. Thefamily of (¢, F')-dynamic
reducts off is defined by

(7.2) D.Red(I,F)={Q € Red(Z): 1 — e < sp(Q)}
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where

(7.3) op(Q) = LT EF:Q € Red(T)}]

|F|

is theF- stability coefficient of). Model selection proceeds in four steps:

5]

5 and a threshole.

1. Choose numbers, k;, j < n, 1 <k; <

2. Foreachl < j < n generate a subsystefm of 7 by randomly deleting &; objects ofU/, and
setF ={Z, : 1 < j < n}.

3. Find the reducts fafand eacly;.

4. Choose all reductg with 1 — ¢ < sg(() for further processing.

From these “true dynamic reducts”, decision rules for classification are computed, and the final deci-
sion is taken by “majority voting”.

The method of dynamic reducts employs a kind of internal cross-validation in order to improve the
external prediction quality. We observe that the researcher has to make some subjective choices in step
1. of the procedure, which are not contained in the data. The huge complexity of step 3. forces appli-
cations of heuristic techniques, such as combinatorial or genetic algorithms. Extensive experiments
reported in [2] show that the dynamic reduct approach fares considerably better than the traditional
RSDA method and compares well with customary procedures. For extensions of the method and
similar approaches we refer the reader to [2, 40, 65].

A different approach, reported in [14], does not rely on reducts at all — thus leaving the traditional
RSDA way of reducing feature complexity — and uses information theoretic techniques and the mini-
mum description length principle [58, 59]. The model selection criterion is an entropy Helije—

d) which aggregates

e The complexity of coding the hypotheg)s measured by the entrogy(Q) of the partition of
its associated equivalence relatnand

¢ The conditional coding complexitif (d|Q) of d, given by the values of attributes p,

so that
(7.4) H(Q — d) = H(Q)+ H(d|Q).

The valuel! () — d) is obtained in the following way: Suppose ti#gt generates the partition éf
with classed\i;, ¢ < k, each having carditi&y m;. In compliance with the principle of indifference —
the statistical basis of RSDA — we suppose that the elemerifsaoé randomly distributed within the
classes, so that the probability of an elemebeing in class\i; isjust%. This leads to a probability
distribution{#; : « < k} defined by

me

_m.

¥

14



Suppose that the unidn of deterministic classes @ — d is not empty, and that the deterministic
classes aréd/y, ..., M.. The underlying idea is the consideration that each observatiord/ \ V'

is the result of a random process whose characteristics are unknown; therefore, eagtsisoctd
be viewed as a realization of an unknown probability distribution with uncertaitdy, (|U]). This
observed probability distribution is given By, : i < ¢+ |U \ V|} with

2 def 7%2'7 if @ <cg,
(7.5) vy = ,
|17|, otherwise

We now define thentropy of rough predictiofwith respect ta) — d) as
. 1
H(Q—d)> i 10g2($)
and have

HQ—d)=) #i- log2 )+ UV 57 - loga (JU])

1<c | |

= "4 log2 + (1 =) - logy(|U]) .

i<c Guessing
Knowledge
wherey = v(Q — d). This gives us
H{d|Q) = H(Q = d) - H(Q)
= (1 —7) -log,(|U]) Zﬂz 10»‘:’;2
i>c

The importance ofi () — d) is due to the fact that it aggregates the uncertafiity!|)) and the

effort H (Q) of coding the hypothesis, i.e. the predicting elements. Thus, one can compare different
attribute setg); in terms of a common unit of measurement, which cannot be done by a condi-
tional measure of prediction success such approximation or dynamic reducts. Furthermore, there
are no additional parameters required, so that the method is well in accord with the RSDA basic
principle (1.1). The model selection (and attribute reduction) process SO8&schingOptimal
RoughEntropy Sets) compares well with standard numerical methods, without using invasive model
assumptions. Detailed results can be found in [14] and on the wdiigit¢www.psycho.
uni-osnabrueck.de/sores/

It is worthy of mention that these methods are universal, and they take place before ad hoc tuning for
specific situation can be applied.

8 Data discretisation

Attributes with continuous values pose a severe problem for RSDA, indeed, for any rule based data
analysis method: If there are many values, the equivalence classes belonging to the attribute set in
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guestion may have many small classes, and a rule will be based on a few instances only. Therefore,
its significance will be low, and its ability to classify new objects is rather limited. There are many
methods to discretise a continuous domain, most of which require additional parameters and model
assumptions, and thus, are outside the rough set paradigm. We invite the reader to consult[37, 38, 64]
for such methods in the context of RSDA.

The general claim that RSDA is not applicable to most real life problems, because it cannot han-
dle continuous variables is not supported by recent research results [3], and [36, 37, 39] show that
RSDA can be supplemented by numerical discretisation procedures. The success of applications of
fuzzy controlling, which also requires discretisation of continuous data, shows that the distinction
of “continuous data” vs. “discrete data” does not necessarily imply that there is a need for different
“continuous methods”, respectively, “discrete methods”, to handle these different types of data.

A filtering procedure which uses only internal information has been put forward in [13]. The main
idea is to collect attribute values within one attribute domain, which do not split a class of the decision
attribute; the procedure makes makes no use of the ordering of attribute values. For example, if there
isarule

If g=1.2 0rq =4.6 orq = 4.7, thend = green,

then one can collect 1.2, 4.6, and 4.7 into a single attribute valerairmally, the descriptor function
fq : U = V, is replaced by a functioff, : U — 2",

The important feature of this procedure is that the internal dependency structure of the system is kept
intact, and that no additional parameters are needed. Nevertheless, this simple “nominal” filtering
method is surprisingly powerful, as its application to the Iris data set (Table 2) shows: Table 5 gives
the filtering for the data. There, for example, the sepal length values 43 — 48 and 53 are collected
into one common value 46; in this attribute, filtering reduces the number of classes from 35 to 22.
Observe the large reduction in the number of classes of the petal attributes. Extensions of this method
to multi-attribute filtering can be found in [79, 80].

9 Extensions and variations of RSDA

In this section we will briefly describe other directions into which RSDA has branched, some of which
are only beginning to be investigated.

Thevariable precision rough set mod@/PRS), introduced in [83], is a generalisation of the original
RSDA in the direction of relaxing the strict boundaries of equivalence classes; it assumes that rules
are only valid within a certain part of the population, and it is able to cope with measurement errors:

“Hypotheses derived from sample data should.notbe based only on error — free clas-
sification rules observed in the sample data. Also, partially incorrect classification should
be taken into account. Any partially incorrect classification rule provides valuable trend
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Table 5: Filtering of Iris data [3]

) ) No of classes
Attribute Filter Before  After
Sepal length: 43-48, 53 46
66,70— 70 35 22

71-79— 77
Sepal width: 35, 37, 39—-44> 35 23 16

20, 24— 24

Petal length: 10-19+ 14
30-44,46,47~ 46 43 8

50, 52, 54-69- 50

Petal width: 1-6+ 2
10-13— 11 22 8

17,20-25— 17

information if the majority of available data to which such a rule applies can be correctly
classified” [83].

The first step in the VPRS analysis is a numerical form of set inclusion in analogy to the rough
membership function of (5.4). X, Y C U, then therelative classification error ok with respect to
Y is the value

o) C(ny){lX;gY? if X # 0,

0, otherwise.

We now choose a tolerance threshold 3 < 0.5 and set

(9.2) X é Y <= ¢(X,Y) < 8.

Given an approximation spa¢g, #) we define lower and uppér— approximation in analogy to (2.3)
and (2.4) by

def

(9.3) X = J{bn: 62 é X}

(9.4) X7 U{Ow ce(fz, X) < B}

In this spirit, one can definea— dependent approximation quality¢) LA P), andp — approximate
rules. Details can be found in [83], and some application examples in [84].

The advantage of the VPRS is that it uses only two parameters, the external precision pasameter
and the internal approximation quality to describe the quality of a rule system; its disadvantages
are that precision ang are partially exchangeable, and that there is as yet no theoretical background
to judge which combination is best suited to the data.
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A much more general form of “rough inclusion” was proposed in [51] which is modelled after Le”
niewski's mereology [28, and also the reprint [29]]. Mereology is an alternative to set theory which
avoids the pitfalls of Russel’'s paradox. Unlike set theory, which distinguishes betwaredC, its

only connective is a “part of” relatio#, which is assumed to be asymmetric, and transitive; thus,

is a strict partial order. It has been recognised that mereology is often more suitable as a language for
reasoning about complex objects than first order logics based on Cantorian set theory; applications of
mereological systems arise, for example, in spatial reasoning [4, 78] and natural language processing
[32].

A model of rough mereologyg a structuré = (X, i, n, F'u), such thatX is a collection of objects,
@ X x X — [0,1] a function, andn € X; we denote byX ™ the setX \ {n}. Furthermore,
Fu :2X" — X is a function, calledusion such that

©.5) x=FuU) <= (Vz € XTy)[p(z,2) = 1=
' (Gw € Ut € XF)(u(w, 2) = LA p(w,t) = LA p(t,2) = 1)].

There are the following axioms:

(9.6) (Vo € X)[u(n, w) = 1A (u(w,n) = 1 = p(n, w) = 0)].

Foralla,y,z € X,

9.7) plz, z) =1,

(9.8) p(@,y) =1= plzy) > plz,2).

The distinguished will be referred to as theull element. The functiory is called aough inclusion
and it is interpreted as:“is part ofy to degreeu(z, y)”. An example is the functiops : 2V x 2V —
[0, 1] defined by

(9.9) p(X,y) =3¢ 70
0, otherwise.

It is shown in [51] that rough mereology extends classical mereology, and that, furthermore,

. we can interpret rough inclusions as global fuzzy membership functions on the
universe of discourse which satisfy certain general requirements responsible for their
regular mathematical properties.”.

Roughinclusions are the basis for reasoning about the synthesis of complex systems from their simpler
parts and have widespread applications, for example, computer-aided design, re-engineering, and
distributed problem solving. We invite the reader to consult [65] for an overview of recent results in
this area.

L1t may be interesting to remark, thatémiewski was vehemently opposed to the introduction of a null element, [see e.g.
29, p.18ff].
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Table 6: State complexity
# of attributes
#ofattr.| 10| 20| 30
values

log,, (states)
3.01| 6.02| 9.03
477 9.54| 14.31
6.02 | 12.04| 18.06
6.99| 13.98| 20.97

a b~ wN

It has been argued that the condition of transitivity for an indiscernibility relation is too strong, viz.
the “Sorites Paradox” [34]. Thus, similarity relations, which are reflexive and symmetric, but not
necessarily transitive, have been studied inside RSDA in some detail (for example, in rough mereol-
ogy), and many of the notions of indiscernibility based RSDA have been translated and adjusted to
the new situation [23, 27, 55, 67]. The logical structure of the resulting systems has been investigated
in[26, 76, 77].

Ordinal prediction takes into account numerical information of the domain of the decision attribute;
its rules predict intervals rather than unique values and are of the form

If f,(z)=ua...,thena < fy(z) <,

wherea, b € V; are real numbers. A rough set approach to ordinal prediction has been given in [11],
and a similar problem, applied to the rough approximation of a preference relation, has been studied
in [20].

We also should like to mention that the rough approximation of relations is of considerable impor-
tance, for example, in social choice, preference relations, or spatial reasoning [5, 6, 8, 16, 81].

10 Concluding remarks

RSDA is the analysis of data based purely on the description of granularity expressed by equivalence
relations on the object séf, where the only explicit model assumption is the operationalisation of
data in form of an information system designed by a researcher. In that, RSDA differs from most other
data analysis methods, and this is where its strengths, but also its weaknesses lie. The strength of re-
quiring no outside parameters is that the method is applicable (and, indeed, applied) to all situations
in which data is given in the RSDA operationalisation of information systems. In most cases, real life
problems have few data points with respect to state complexity, and show many attribute dependen-
cies (Table 6). Therefore, traditional statistical models are not always optimal tools for knowledge
discovery because of their model assumption of representativeness of the sample, and their sensitiv-
ity to irrelevant features. In these cases, RSDA can serve as a useful pre-processing tool, removing
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superfluous attributes and, with the®sHIAN extensions, suggesting validated rules and models on
an objective and global basis, i.e without any tuning for a particular application.

If useful and validated background knowledge is available, then the use of hybrid methods, with
RSDA as a basis, has proved to be rather successful. In particular, the combination of rough and fuzzy
methods turns out to be a powerful tool for soft data analysis, and we invite the reader to consult the
collection [46] for a more detailed description and many exemplary case-studies.
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