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Abstract

A survey of results is presented on relationships between the algebraic systems derived from the
approximation spaces induced by information systems and various classes of algebras of relations.
Rough relation algebras are presented and it is shown that they form a discriminator variety. A
characterisation of the class of representable rough relation algebras is given. The family of

closure operators derived from an approximation space is abstractly characterised as certain type
of Boolean algebra with operators. A representation theorem is given which says that every such
an algebra is isomorphic with a similar algebra that is derived from an information system.

1 Notation and definitions

The history and the impact of rough sets as a means of modelling incomplete information are consid-

ered elsewhere in this Volume, so we shall be content to just state the basic notions. LetU be a set and

θ an equivalence relation onU . The pair〈U, θ〉 will be called anapproximation space. ForA ⊆ U ,

Au =
⋃ {θx : x ∈ A} is theupper approximation ofA, andA ⊆ U , Ad =

⋃ {θx : θx ⊆ A} is its

lower approximation. A rough subset ofU with respect toθ is a pair〈Xd, Xu〉 with X ⊆ U . The

collection of all rough subsets ofU with respect toθ is denoted bySbθr(U) , and will sometimes be

called afull algebra of rough sets. If θ is understood, we shall just writeSbr(U)

2 Rough Sets and Regular Double Stone Algebras

An algebraic approach to rough sets was first proposed in (Iw1). Iwinski’s aim – later extended by

(PP1) – was to endow the rough subsets ofU with a natural algebraic structure. It turns out that regular

double Stone algebras are the proper setting.

A double Stone algebra (DSA)〈L,+, ·, ∗, +, 0, 1〉 is an algebra of type 〈2, 2, 1,

1, 0, 0〉 such that

1. 〈L,+, ·, 0, 1〉 is a bounded distributive lattice,



2. x∗ is the pseudocomplement ofx, i.e. y ≤ x∗ ⇔ y · x = 0,

3. x+ is the dual pseudocomplement ofx, i.e. y ≥ x+ ⇔ y + x = 1,

4. x∗ + x∗∗ = 1, x+ · x++ = 0.

Conditions 2. and 3. are equivalent to the equations

x · (x · y)∗ = x · y∗, x + (x+ y)+ = x+ y+

x · 0∗ = x, x + 1+ = x

0∗∗ = 0, 1++ = 1

so that DSA is an equational class. L is calledregular, if it additionally satisfies the equationx ·x+ ≤
y + y∗. This is equivalent tox+ = y+ andx∗ = y∗ imply x = y.

ThecenterB(L) = {x∗ : x ∈ L} of L is a subalgebra ofL and a Boolean algebra, in which∗ and
+ coincide with the Boolean complement which we denote by−. An element of the centre ofL will

also be called aBoolean element. Thedense set{x ∈ L : x∗ = 0} of L is denoted byD(L), or simply

D, if L is understood. For anyM ⊆ L,M+ is the set{x+ : x ∈M}.

A construction of regular double Stone algebras which is important for our purposes is given by

Lemma 2.1. (Ka1) Let 〈B,+, ·,−, 0, 1〉 be a Boolean algebra andF be a not necessarily proper

filter onB. Set

〈B, F 〉 = {〈a, b〉 ∈ B × B : a ≤ b and − b+ a ∈ F} .

Then,L = 〈B, F 〉 is a 0,1 – sublattice ofB × B, and it becomes a regular double Stone algebra by

setting

〈a, b〉∗ = 〈−b,−b〉, 〈a, b〉+ = 〈−a,−a〉 .

Furthermore,B(L) ∼= B as Boolean algebras, andD(L) ∼= F as lattices. Note that

B(L) = {〈a, a〉 : a ∈ B}, D(L) = {〈a, 1〉 : a ∈ F} .

Conversely, ifM is a regular double Stone algebra,B = B(M), F = D(M)++, then the mapping

which assigns to eachx ∈M the pair〈x++, x∗∗〉 is an isomorphism betweenM and〈B, F 〉.

If F = B, then〈B, F 〉 is also denoted byB[2].

In view of things to come it is useful to note that by Lemma 2.1 each elementx of a regular double

Stone algebra is uniquely described by the greatest Boolean element belowx and the smallest Boolean

element abovex.

Now, suppose that〈U, θ〉 is an approximation space. We can view the classes ofθ as atoms of a

complete subalgebra of the Boolean algebraSb(U). Conversely, any atomic complete subalgebra

B of Sb(U) gives rise to an equivalence relationθ onU , and this correspondence is bijective. The

elements ofB are∅ and the unions of classes of its associated equivalence relation. If{a} ∈ B, then,

for everyX ⊆ U we have
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If a ∈ Xu, thena ∈ X, and the rough sets of the corresponding approximation space are the elements

of the regular double Stone algebra〈B, F 〉, whereF is the filter ofB which is generated by the union

of singleton elements ofB1. Note that, ifθ is the identity onU , thenF = {U}, and we see that the

full algebra of rough sets onU need not be of the formB[2]. At any rate, we have

Proposition 2.2. (Iw1, PP1, Co2) Suppose that〈U, θ〉 is an approximation space. Then,Sbθr(U) is a

regular double Stone algebra with the operations of Lemma 2.1.

Steve Comer has shown that a converse also holds:

Proposition 2.3. (Co1, Co2) LetL be a regular double Stone algebra. Then, there is an approxima-

tion space〈U, θ〉 such thatL is isomorphic to a subalgebra ofSb(U)[2]

Proof. Every Stone algebra can be embedded into an algebra of the formB[2], whereB is a complete

and atomic Boolean algebra, see (BG1). As remarked above, each such algebra is isomorphic to a full

algebra of rough sets.

3 Rough Relation Algebras

Pawlak’s original approach to model incomplete information was to take sets as the basic entity.

However, sets can themselves have an underlying structure or a special form. Subsequently, (Co2)

proposed to look at the case where the underlying sets are binary relations, and how incomplete

information about these can be modelled.

If we are given a setU , then the subsets ofU can be thought of as truth sets of unary predicates, and

appropriate operations on subsets ofU are the usual Boolean ones which, in the case of rough sets,

lead to certain regular double Stone algebras. If we look at binary relations we have additional natural

operations, namely, relational composition◦, relational converse−1, and the identity relation1′ as a

new constant: Here,

R ◦ S = {〈a, c〉 ∈ U × U : There is someb ∈ U such thatR(a, b) andS(b, c)},
R−1 = {〈b, a〉 : R(a, b)},

1′ = {〈a, a〉 : a ∈ U}.

With these operations we can view the set of all binary relations onU as an algebra

Rel(U) = 〈Sb(U2),∪,∩,−, ∅, U × U, ∗, −1, 1′〉 ,

called thefull algebra of binary relations on U. Any subalgebra ofRel(U) is called analgebra of

binary relations (BRA) on U.

Tarski has introduced a class of algebras which generalizes the notion of BRA:

A relation algebra (RA) 〈A,+, ·,−, 0, 1, ◦,−1, 1′〉 is a structure of type 〈2, 2, 1,

0, 0, 2, 1, 0〉which satisfies

1I should like to thank Piero Pagliani for pointing this out.
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1. 〈A,+, ·,−, 0, 1〉 is a Boolean algebra.

2. 〈A, ◦, −1, 1′〉 is an involuted monoid.

3. For alla, b, c the following conditions are equivalent:

(a ◦ b) · c = 0, (a−1 ◦ c) · b = 0, (c ◦ b−1) · a = 0 .

It can be shown that the class of RAs is equational. For the background and the relevant facts of RAs

the reader is invited to consult (Jo2) or (TG1).

A relation algebraA is calledrepresentable, if it is a subalgebra of a product of full algebras of binary

relations.

Now, we shall generalize RAs to rough structures (Co2): Let〈U, θ〉 be an approximation space, and

setV = U × U . θ defines in a canonical way an equivalence2θ onV by

〈x, y〉 ≡2θ 〈u, v〉 iff x ≡θ u andy ≡θ v ,

and〈V, 2θ〉 is an approximation space.

A rough relation on〈U, θ〉 is a rough subset of〈V, 2θ〉. In other words, a rough relation on〈U, θ〉 is

a pair〈Sd, Su〉, whereS ⊆ V and for all〈a, b〉 ∈ V

〈a, b〉 ∈ Sd ⇔2 θ〈a, b〉 ⊆ S,

〈a, b〉 ∈ Su ⇔2 θ〈a, b〉 ∩ S 6= ∅ .

(Recall that2θ〈a, b〉 is the equivalence class of〈a, b〉 with respect to2θ.)

Sb
2θ
r (V ) is a regular double Stone algebra by the results of the preceding section. We define the

additional relational operators onSb
2θ
r (V ) as follows:

〈Td, Tu〉 ◦ 〈Sd, Su〉 = 〈Td ◦ Sd, Tu ◦ Su〉 ,
〈Sd, Su〉−1 = 〈S−1

d , S−1
u 〉 ,

1′ = 〈θ, θ〉 .

The structure〈Sb2θr (V ),∪,∩, ∗, +, ∅, V, ◦, −1, 〈θ, θ〉〉 is called thefull algebra of rough relations

over〈U, θ〉. Subalgebras ofSb
2θ
r (V ) are calledalgebras of rough relations.

Rough relation algebras are a generalization of relation algebras, where the Boolean part is replaced

by a regular double Stone algebra, and the following set of axioms was proposed by (Co2):

A rough relation algebra (R2A) is an algebra

〈L,+, ·, ∗, +, 0, 1, ; , −1, 1′〉

such that

(i). 〈L,+, ·, ∗, +, 0, 1〉 is a regular double Stone algebra,

(ii). (x; y); z = x; (y; z),
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(iii). (x+ y); z = x; z + y; z,

(iv). x; 1′ = 1′; x = x,

(v). (x−1)−1 = x,

(vi). (x+ y)−1 = x−1 + y−1,

(vii). (x; y)−1 = y−1; x−1,

(viii). (x−1; (x; y)∗) · y = 0,

(ix). (x; y) · z ≤ x; x−1; z,

(x). (x∗; y∗)∗∗ = x∗; y∗,

(xi). (1′)∗∗ = 1′.

If B is a relation algebra, thenB[2] becomes a rough relation algebra if; and−1 are defined compo-

nentwise. We shall denote this algebra byB
[2]
r .

It is clear that every full algebra of rough relations is an R2A. A rough relation algebra is representable,

if it is a subalgebra of a product of full algebras of rough relations.

Many equations which hold in RAs also hold in R2As. Some properties specific to rough relation

algebras are given in

Proposition 3.1. (Co2, Du1) LetL be an R2A. Then,

1. B(L) is closed under; and−1, and1′ ∈ B(L).

2. B(L) is a relation algebra and a subalgebra ofL.

3. If L ∼= Sb
2θ
r (V ) for some approximation space, thenB(L) ∼= Rel(U/θ).

4. D(L) is closed under; and−1.

5. (x; y)∗∗ = x∗∗; y∗∗ for all x, y ∈ L.

Proof. 1. The closure ofB(L) under; and1′ are just axioms (x) and (xi). Since−1 distributes over
∗, and(a−1)−1 = a, we have

a∗ · a = 0 ⇒ (a∗)−1 · a−1 = 0 ⇒ (a∗)−1 ≤ (a−1)∗ ,

and conversely,

a−1 · (a−1)∗ = 0 ⇒ a · ((a−1)∗)−1 = 0 ⇒ ((a−1)∗)−1 ≤ a∗ ⇒ (a−1)∗ ≤ (a∗)−1 .

2. To show that L satisfies condition 3. for RAs, one can use 2.1. of (CT1) which goes through

unchanged. Clearly,B(L) is a subalgebra ofL.

3. This follows immediately from the definition ofB(L).
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4. Letx, y ∈ D(L). Then,

1 = x∗∗ = y∗∗ = x∗∗; y∗∗ = (x; y)∗∗ ,

and therefore(x; y)∗ = 0.

5. Clearly,x ≤ x∗∗ andy ≤ y∗∗ imply

(x; y)∗∗ ≤ (x∗∗; y∗∗)∗∗ = x∗∗; y∗∗ .

For the converse assume that(x; y)∗∗ � x∗∗; y∗∗. Then,(x∗∗; y∗∗) · (x; y)∗ 
 0, and

((x−1)∗∗; (x; y)∗) · y∗∗ 
 0 ,

((x−1)∗∗; (x; y)∗) · y 
 0

(x∗∗; y) · (x; y)∗ 
 0

((x; y)∗ · y−1) · x∗∗ 
 0

((x; y)∗ · y−1) · x 
 0

(x; y) · (x; y)∗ 
 0 ,

a contradiction.

Just like relation algebras, R2As have very strong structural properties: An algebraA is adiscrimina-

tor algebraif there is some term operationf in the language ofA such that

f(a, b, c) =

{
c, if a = b,

a, otherwise.

A varietyV is called adiscriminator varietyif it is generated by a classK of algebras such that some

term operationf in the language ofV represents the discriminator term as above on each member of

K. Discriminator algebras have, among others, the following pleasant properties, see (JAN1):

Proposition 3.2. LetV be a discriminator variety. Then,

1. V is congruence permutable, congruence distributive, congruence extensile, and semisimple.

2. For every non trivial algebraA in V the following are equivalent:

(a) A is simple.

(b) A is subdirectly irreducible.

(c) A is directly indecomposable.

3. There is an effective way of associating with each open Horn formulaϕ in the language ofV
an equationσϕ in this language such thatϕ andσϕ have the same truth set in every simple

member ofV.
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To show that R2A is a discriminator variety we first state

Lemma 3.3. (Du1) LetL be an R2A andψ ∈ Con(B(L)). Then,

1. ψL ∈ Con(L).

2. Con(L) ∼= Con(B(L)).

We now have

Proposition 3.4. (Du1) The variety of R2As is a discriminator variety.

Proof. It is enough to show that a simple R2A L is a discriminator algebra. Fora, b ∈ B(L) we

denote the symmetric difference bya ⊗ b; recall thata = b⇔ a⊗ b = 0. Set

τ(a, b) = 1; (a∗∗ ⊗ b∗∗ + a++ ⊗ b++); 1.

Then,

τ(a, b) =

{
1, if a 6= b,

0, otherwise.

Let a = b; then, sinceL is regular,a∗∗ = b∗∗ anda++ = b++, and thusa∗∗⊗ b∗∗ = a++ ⊗ b++ = 0.

It follows that

[1; (a∗∗ ⊗ b∗∗); 1] + [1; (a++ ⊗ b++); 1] = 1; [(a∗∗ ⊗ b∗∗)) + (a++ ⊗ b++)] = τ(a, b) = 0.

Conversely, leta 6= b. Then,a∗∗ 6= b∗∗ or a++ 6= b++. SinceL is simple, so isB(L) by Lemma 3.3.

We know from (Jo1) that for a relation algebraA andx ∈ A,

x 6= 0 ⇔ 1; x; 1 = 1.

Therefore,

1; (a∗∗ ⊗ b∗∗); 1 = 1 or 1; (a++ ∗ b++); 1 = 1,

sincea∗∗, b∗∗, a++, b++ are Boolean. Consequently,

1 = [1; (a∗∗⊗ b∗∗); 1] + [1; (a++ ⊗ b++); 1] = τ(a, b).

Now, set

σ(a, b, c) = τ(a, b) · a+ τ(a, b)∗ · c.

If a = b, thenτ(a, b) = 0, and henceσ(a, b, c) = τ(a, b)∗ · c = c. If a 6= b, thenτ(a, b) = 1, and

thereforeσ(a, b, c) = τ(a, b) · a = a.

Finally, the representable R2As can be characterized as follows:
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Proposition 3.5. (Du1) Suppose thatL = 〈B, F 〉 is an R2A. Then,L is representable if and only if

B(L) is a representable relation algebra andL satisfies the equation(x; y)++ = x++; y++.

Proof. Call an R2A canonicalwhich satisfies the equation. To show the result, we first prove some

auxiliary results which seem interesting in their own right. Our first claim explains why we call these

algebras canonical:

Claim 1. (1) L is canonical if and only if

〈a, b〉; 〈c, d〉= 〈a; c, b; d〉

for all 〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉.

Proof. “⇒”: SupposeL is canonical, and let〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉. Then, there arex, y ∈ L such

thata = x++, b = x∗∗, c = y++, d = y∗∗, and

〈x+ +, x ∗ ∗〉; 〈y+ +, y ∗ ∗〉 = x; y

= 〈(x; y) + +, (x; y) ∗ ∗〉
= 〈x+ +; y + +, x ∗ ∗; y ∗ ∗〉 .

“⇐”: Let 〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉. Then,

(〈a, b〉; 〈c, d〉)++ = 〈a; c, b; d〉++ = 〈a; c, a; c〉= 〈a, a〉; 〈c, c〉= 〈a, b〉++; 〈c, d〉++,

which proves the claim.

Claim 2. (2) For anyL, B(L)[2]
r is canonical and, ifL is canonical, then it is a subalgebra ofB(L)[2]

r .

Proof. This follows immediately from the definition ofB[2]
r and Claim 1.

Claim 3. (3) If C is (isomorphic to) a full relation algebraRel(U), thenC[2]
r is isomorphic to a full

algebra of rough relations.

Proof. LetU ′ = {x′ : x ∈ U} be disjoint fromU , and setV = U∪U ′. Define an equivalence relation

θ onV by identifyingx andx′, so thatθx = {x, x′}. Then,B(RV ) andC are isomorphic as relation

algebras. Let〈Rd, Rd〉 ∈ B(RV ), and define

S = R ∪ {〈x, y〉 : x, y ∈ U, θx× θy ⊆ −Rd} .

Then,Sd = Rd, Su = 1, and thus〈Rd, 1〉 ∈ D(RV ) for eachR ∈ C. Now, the mapping defined

by 〈Rd, Rd〉 7→ 〈Rd, 1〉 is a lattice isomorphism, and henceB(RV ) ∼= D(RV ). It follows that

RV = B(RV )[2]
r

∼= C
[2]
r .

Now we can prove the Proposition:

“⇒”: It is enough to show that every full algebraRU of rough relations is canonical. LetL = RU

be the full algebra of rough relations over〈U, θ〉. Then,B(L) ∼= Rel(U/θ), and thusB(L) is a

representable relation algebra.
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Next, let〈Rd, Ru〉, 〈Sd, Su〉 ∈ RU . Then,

(〈Rd, Ru〉, 〈Sd, Su〉)++ = (〈Rd; Sd, Ru, Su〉)++,

= 〈Rd; Sd, Rd, Sd〉,
= 〈Rd;Rd〉; 〈Sd, Sd〉,
= 〈Rd;Ru〉++; 〈Sd, Su〉++.

“⇐”: Suppose thatL = 〈B, F 〉 is canonical, and thatB is a representable relation algebra. Since

L ≤ B
[2]
r by Claim 2, we can assume thatL = B

[2]
r ; furthermore, we may assume by 3.4 and 3.2 that

L is simple. Then,B is simple by 3.3, and, since it is representable, there is some setU such that

B ≤ Rel(U). It follows thatL = B
[2]
r ≤ Rel(U)[2]

r , which is representable by Claim 3.

In particular, the representable rough relation algebras form an equational class.

Relation algebras are a special case of the more general concept of Boolean algebras with operators.

Motivated by rough relation algebras, Steve (Co3) has investigated the theory of regular double Stone

algebras with operators.

4 Information Systems

In the previous sections we have looked at the algebraic structure arising from one given approxima-

tion space, and we have considered the special case when the underlying carrier set was the universal

binary relation on some other set. In this section we shall describe the algebraic structure of a set of

approximation spaces derived from an information system. It turns out that there is a close connection

between the resulting structures and cylindric algebras and their derivatives. The standard reference

for cylindric algebras are the books (HMT1, HMT2) and we shall refer to these for definitions and

results on these algebras. All results in this section are due to Steve Comer.

An information systemS = 〈U,Ω, V, f〉 as discussed e.g. in (Pa1, Pa2), consists of

1. A setU of objects,

2. A finite setΩ of attributes,

3. A setV of attribute values,

4. An information functionf : U × Ω → V .

We think off(u, x) as the value which objectu takes at the attributex. With eachQ ⊆ Ω we can

associate an equivalence relationθQ onU by setting

a ≡θQ
b

def⇐⇒ f(a, x) = f(b, x) for all x ∈ Q,

so that〈U, θQ〉 is an approximation space.

Intuitively, a ≡θQ
b if the objectsa andb are indiscernible with respect to the values of their attributes

from Q. GivenA ⊆ U , we denote its upper approximation with respect toθQ by QA, and its lower
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approximation byQA. Clearly,Q is a closure operator on〈Sb(U),⊆〉, andQ is an interior operator.

A setA ⊆ U is calleddefinable with knowledgeQ ⊆ Ω, if A is a union of equivalence classes ofθQ;

equivalently,A is definable fromQ, iff QA = QA.

As an example – which uses rough relations – let us consider the following scenario: Suppose thatU

is a set of car brands,Ω a set of attributes associated with cars, e.g.colour, price, reliabilityetc,V a set

of appropriate attributes, andf an information function. LetR be a binary relation onU which was

obtained by presenting to a subject two car models, and asking her to decide which she likes better. In

order to find out what were the decisive factors in her choice, we can now use rough set methods: Let,

as a simple example,θ be the equivalence onU which identifies cars by their colour. Ifθ〈a, b〉 ∈ R

and, say,a is red andb is green, we can infer that there is some evidence that she generally prefers

green cars over red ones, and ifR = 2{colour}R , then she is never inconsistent in her choices with

respect to colour.

Theknowledge approximation algebraBS associated withS is the structure

〈Sb(U),∪,∩,−, ∅, U,Q〉Q⊆Ω .

We note thatBS is a complete and atomic Boolean algebra with the additional closure operators

Q, Q ⊆ Ω. If Q ⊆ Ω, the reduct〈Sb(U),∪,∩,−, ∅, U,Q〉 of BS is denoted byRdQBS, and it is

called anapproximation closure algebra.

(Co1) has proposed the following axioms for a class of algebras which are intended to capture the

knowledge approximation algebras associated with information systems: An algebraB = 〈B,+, ·,−, 0, 1, κP〉P⊆Ω

is aknowledge approximation algebra of typeΩ – called a KAΩ – if eachκP is a unary operator on

B, and

A1. 〈B,+, ·,−, 0, 1〉 is a complete atomic Boolean algebra,

A2. κP 0 = 0,

A3. x ≤ κPx,

A4. κP (x · κP y) = κPx · κP y,

A5. If x 6= 0, thenκ∅x = 1,

A6. κP∪Qx = κPx · κQx, if x is an atom of B,

for all x, y ∈ B andP,Q ⊆ Ω. The class of all knowledge approximation algebras of typeΩ is

denoted byKA Ω. We note that axioms A1 – A4 tell us that for eachP ⊆ Ω, the reductRdPBS =
〈B,+, ·,−, 0, 1, κP〉 ofB is a cylindric algebra of dimension 1 (CA1) in the sense of (HMT1). Thus,

we can regard the operatorsκP as (in general non - commuting) cylindrifications, and it follows from

the corresponding properties of cylindric algebras that the properties given below hold:

Proposition 4.1. (Co1) LetB = 〈B,+, ·,−, 0, 1, κP〉P⊆Ω be an approximation algebra. Then,

1. If x ≤ y, thenκPx ≤ κP y.
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2. κPκPx = κPx.

3.
∑

i κPxi = κP (
∑

i xi)

4. κP (
∏

i κPxi) =
∏

i(κPxi).

The next result shows that the algebra associated with an information system is aKA Ω:

Proposition 4.2. (Co1) LetS = 〈U,Ω, V, f〉 be an information system, andBS be its associated

knowledge approximation algebra. Then,

1. B∈KA Ω,

2. EachRdQBS is a cylindric algebra of dimension one.

Proof. 1. BS is a complete and atomic Boolean algebra, and the operationsQ are closure operators.

This implies A1, A2, and A3. For A4 we need to show thatQ(C ∩ QD) = QC ∩ QD for all

C,D ⊆ Ω:

“⊆”: Let x ∈ Q(C ∩QD). Then, there is somey ∈ C ∩QD such thatx ≡θQ
y. Hence,

x ∈ QC, and, sinceQD is a union ofθQ classes, we also havex ∈ QD.

“⊇”: Let x ∈ QC ∩ QD. Then, there arey ∈ C, z ∈ D such thatx ≡θQ
y and

x ≡θQ
z. SinceD is a union ofθQ classes, we have in facty ∈ QD, which shows that

x ∈ Q(C ∩QD).

A5 follows from the fact thatθΩ = 2U . To show A6, letP,Q ⊆ Ω. Because of A5, we can suppose

that bothP andQ are not empty. Letx, y ∈ U ; then,

y ∈ P ∪Q{x} ⇔ y ≡P∪Q x,

⇔ f(y, z) = f(x, z) for all z ∈ P ∪Q,
⇔ f(y, z) = f(x, z) for all z ∈ P

andf(y, z) = f(x, z) for all z ∈ Q,

⇔ yθPx andyθQx,

⇔ y ∈ P{x} ∩Q{x}.

2. follows immediately from the definition.

In order to show that the converse also holds, i.e. that the models of the algebras inKA Ω are as

expected, we require some preparation. The definition ofKA Ω and Proposition 4.1 show thateach

element ofKA Ω is a completely atomic normal Boolean algebra with operators, i.e. a completely

atomic Boolean algebra whose extra operators distribute over arbitrary joins, and do not move0.

The completeness of the algebra and the operators imply that eachκP is already determined by its

values on the atoms of the Boolean partB ofB. Theatomic structureAt(B) ofB is 〈At(B), TP 〉P⊆Ω,

whereAt(B) is the set of atoms ofB, and for eachP ⊆ Ω, TP is the relation

{〈x, y〉 ∈ At(B) × At(B) : y ≤ κPx} .
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Proposition 4.3. (Co1) LetS be an information system andBS be its associatedKA Ω with atomic

structureAt(BS). Then, for allP,Q ⊆ Ω,

1. TP is an equivalence relation,

2. T∅ = 2At(BS),

3. TP ∩ TQ = TP∪Q.

In particular,At(BS) is a∩ – subsemilattice of the partition latticeΠ(At(BS)).

Proof. 1. We show thatxTPy ⇔ κPx = κPy, from which the claim follows: Lety ≤ κPx, and

assume thatx 6≤ κPy. Then, sincex is an atom ofB, we havex ∩ κP y = ∅, and A2 and A4 imply

thatκPx ∩ κP y = ∅. This contradictsy ≤ κPx. The other direction is obvious.

2. is an immediate consequence of A5.

3. “⊆”: Let 〈x, y〉 ∈ TP ∩ TQ, i.e. κPx = κPy andκQx = κQy. Sincex andy are atoms and using

A4 we obtain

κP∪Qx = κPx ∩ κQx = κP y ∩ κQy = κP∪Qy.

“⊇”: Let 〈x, y〉 ∈ TP∪Q. Then, using A6,

x ≤ κP∪Qx = κP∪Qy ≤ κPy ∩ κQy

shows thatxTPy andxTQy.

A relational structureL = 〈U, TP 〉P⊆Ω is called aknowledge approximation atom structure, if for all

P,Q ⊆ Ω,

1. TP is an equivalence relation onU ,

2. T∅ = 2U ,

3. TP ∩ TQ = TP∪Q.

If Ω is finite and not empty, we can associate with each such structure an information systemS(L) in

the following way: For eachx ∈ Ω let V (x) be the set of blocks ofT{x}, and setV =
⋃

x∈Ω . Then,

define the knowledge functionf : U × Ω → V by

f(u, x) = The block ofT{x} containingu.

It is easy to see thatS(L) = 〈U,Ω, V, f〉 is an information system. Furthermore,

Proposition 4.4. (Co1) LetB be a KAΩ, Ω finite, andL = At(B) be its atomic structure. Then,

B ∼= BS(L).
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Proof. The carrier setBS(L) ofBS(L) is the power set ofAt(B). Thus, the mappingg : B → BS(L)

defined byg(b) = {x ∈ At(B) : x ≤ b} is a Boolean isomorphism.

Now, letx ∈ B, andP ⊆ Ω. We need to show that

g(κBP x) = κ
BS(L)

P g(x) .(4.1)

This is clearly true ifP = ∅, so that we can suppose thatP 6= ∅; indeed, by A6 we may assume that

P is an atom ofSb(Ω), say,P = {a}. Furthermore, by the additivity of g andκP , we may suppose

thatx is an atom ofB.

Let y be an atom ofB. Then,

y ∈ g(κBP x) ⇔ y ≤ κBP x

⇔ yTPx

⇔ TPy = TPx

⇔ f(x, a) = f(y, a)

⇔ yθPx

⇔ y ∈ θPx = κ
BS(L)

P x = κ
BS(L)

P g(x),

and we are done.

This shows that the axioms for knowledge approximation algebras are complete for the intended

models. A converse for the second part of 4.2 is given by

Proposition 4.5. (Co1)

1. Every complete atomicCA1 is isomorphic to an approximation closure algebra.

2. EveryCA1 is embeddable into an approximation closure algebra.

Proof. 1. Let 〈B, c0〉 be a complete and atomicCA1, andΩ be a nonempty finite set. For each non

emptyP ⊆ Ω let κPx = c0x; also, letκ∅x = 0 if x = 0, andκ∅x = 1 if x > 0. Then,〈B, κP 〉P⊆Ω

is an approximation algebra, and the rest follows from 4.4

2. By 2.7.20 of (HMT1), eachCA1 is embeddable into a complete and atomic one.

The situation regarding the decidabilityof the first order theory ofKA Ω is rather disappointing, though

not altogether unexpected:

Proposition 4.6. (Co1)

1. If |Ω| = 1, then the theory ofKA Ω is decidable.

2. If 2 ≤ |Ω| < ω then the theory ofKA Ω is undecidable and finitely inseparable.

Proof. 1. Let |Ω| = 1. Then, the algebras inKA Ω are of the form〈B, κ∅, κΩ〉, where〈B, κΩ〉 is a

completely atomicCA1, andκΩ is definable in the Boolean part. It was shown in (HMT1) that the

theory of complete atomicCA1 ’s is the same as the theory of finiteCA1 ’s, and that it is decidable.

2. LetEq be the theory of two equivalence relations; it is known thatEq is finitely inseparable, see

(Mo1). There it is also shown that to prove that a theoryT is finitely inseparable, it is enough to show
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There are formulasθv0, Rv0v1, Sv0v1 in the language ofT such that for every finite

modelA = 〈X,R, S〉 of Eq there is a finite modelB of T such that〈θB, RB
, S

B〉 ∼= A.

Let r, s ∈ Ω, r 6= s. We first give a translation ofEq into the language ofKA Ω:

θv0 : v0 is an atom.

Rv0v1 : θv0 ∧ θv1 ∧ κ{r}v0 = κ{r}v1.

Sv0v1 : θv0 ∧ θv1 ∧ κ{s}v0 = κ{s}v1.

If we apply the translation to someB ∈ KA Ω, it follows from Proposition 4.3 that〈At(B), RB, SB〉
is a model ofEq.

Finally, let A = 〈X,R, S〉 be a finite model ofEq. We obtain a knowledge approximation atom

structureL = 〈X, TP 〉P⊆Ω by setting

1. T{r} = R, T{s} = S, T∅ = T{i} = 2X for all i ∈ Ω, i 6∈ {r, s}.

2. TP =
⋂{T{i} : i ∈ P} , for all P ⊆ Ω with |P | ≥ 2.

If A is finite, so is BS(L), and it is straightforward to show that〈At(B), RB,

S
B〉 is isomorphic toA.

In (Co2) a close connection of knowledge approximation algebras to a variant of diagonal free cylin-

dric algebras was established. Since a discussion of these results would require an unproportional

amount of new definitions and notation, we refer the reader to Comer’s paper.
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