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Abstract

A survey of results is presented on relationships between the algebraic systems derived from the
approximation spacesduced by information systems and various classes of algebras of relations.
Rough relation algebras are presented and it is shown that they form a discriminator variety. A
characterisation of the class of representable rough relation algebras is given. The family of
closure operators derived from an approximation space is abstractly characterised as certain type
of Boolean algebra with operators. A representation theorem is given which says that every such
an algebra is isomorphic with a similar algebra that is derived from an information system.

1 Notation and definitions

The history and the impact of rough sets as a means of modelling incomplete information are consid-
ered elsewhere in this Volume, so we shall be content to just state the basic notidtidéd atset and

6 an equivalence relation dii. The pair(U, 6) will be called anapproximation spaceFor A C U,

A, = U {0z : x € A} is theupper approximation off, andA C U, Ag = |J {0z : 0= C A} isits

lower approximation A rough subset of/ with respect td is a pair(X,, X,) with X C U. The
collection of all rough subsets &f with respect ta@ is denoted bysv?(U) , and will sometimes be
called afull algebra of rough setdf 6 is understood, we shall just writeh,.(U)

2 Rough Sets and Regular Double Stone Algebras

An algebraic approach to rough sets was first proposed in (Iwl). lwinski's aim — later extended by
(PP1) —was to endow the rough subset§ afith a natural algebraic structure. It turns out that regular
double Stone algebras are the proper setting.

A double Stone algebra (DSA)(L,+,-,* 7,0,1) is an algebra of type (2,21,

1,0, 0) such that

1. (L,+,-,0,1)is a bounded distributive lattice,



2. z*is the pseudocomplementofi.e.y < z* < y -z =0,
3. o1 is the dual pseudocomplementafie.y > 2™ < y+ 2 =1,
4. ¥+ =1zt - 2ztT =0.

Conditions 2. and 3. are equivalent to the equations

co(-y)=z-y, r+@+y) T =c+y"
z-0* =ux, r+1T =z
0**:07 1++:1

so that DSA is an equational class. L is caltedular, if it additionally satisfies the equatian ™ <

y +y*. Thisis equivalentta™ = y™ andz* = y* imply z = 3.

ThecenterB(L) = {z* : x € L} of L is a subalgebra of and a Boolean algebra, in whi¢rand
* coincide with the Boolean complement which we denote-byAn element of the centre df will
also be called 8oolean elemenfThedense sefz € L : z* = 0} of L is denoted byD (L), or simply
D, if L is understood. Forany/ C L, M T isthe sef{z™ : x € M}.

A construction of regular double Stone algebras which is important for our purposes is given by

Lemma 2.1. (Kal) Let(B, +, -, —,0,1) be a Boolean algebra and' be a not necessarily proper
filter on B. Set

(B,F)={(a,b)e BxB:a<band —b+acF} .

Then,L = (B, F) is a 0,1 — sublattice oB x B, and it becomes a regular double Stone algebra by
setting

{a,b)* = (b, —b), (a,b)" = (—a, —a) .
Furthermore,B(L) = B as Boolean algebras, anB(L) = F as lattices. Note that
B(L) ={(a,a):a € B}, D(L) ={{a,1) :a € F} .

Conversely, if\ is a regular double Stone algebr& = B(M), F = D(M)**, then the mapping
which assigns to each € M the pair(z**, z**) is an isomorphism betweevi and (B, F).

If F = B, then(B, F) is also denoted by!?.

In view of things to come it is useful to note that by Lemma 2.1 each elemefita regular double
Stone algebra is uniquely described by the greatest Boolean elementbatmithe smallest Boolean
element above.

Now, suppose thatU, #) is an approximation space. We can view the classes af atoms of a
complete subalgebra of the Boolean algeBt&U). Conversely, any atomic complete subalgebra
B of Sb(U) gives rise to an equivalence relatiron U, and this correspondence is bijective. The
elements of3 aref) and the unions of classes of its associated equivalence relatipr}. & B, then,

for everyX C U we have



If « € X, thena € X, and the rough sets of the corresponding approximation space are the elements
of the regular double Stone algeljid, F'), whereF is the filter of B which is generated by the union

of singleton elements aB*. Note that, if¢ is the identity onl/, thenF’ = {U}, and we see that the

full algebra of rough sets ofi need not be of the forms2. At any rate, we have

Proposition 2.2. (w1, PP1, Co2) Suppose thét, 6) is an approximation space. Thesib?(U) is a
regular double Stone algebra with the operations of Lemma 2.1.

Steve Comer has shown that a converse also holds:

Proposition 2.3. (Col, Co2) LetL be a regular double Stone algebra. Then, there is an approxima-
tion space(U, #) such thatl is isomorphic to a subalgebra &f(U)

Proof. Every Stone algebra can be embedded into an algebra of thed8imwhereB is a complete
and atomic Boolean algebra, see (BG1). As remarked above, each such algebra is isomorphic to a full
algebra of rough sets. O O

3 Rough Relation Algebras

Pawlak’s original approach to model incomplete information was to take sets as the basic entity.
However, sets can themselves have an underlying structure or a special form. Subsequently, (Co2)
proposed to look at the case where the underlying sets are binary relations, and how incomplete
information about these can be modelled.

If we are given a sdl/, then the subsets &f can be thought of as truth sets of unary predicates, and
appropriate operations on subsetdbfre the usual Boolean ones which, in the case of rough sets,
lead to certain regular double Stone algebras. If we look at binary relations we have additional natural
operations, namely, relational compositigrrelational converse!, and the identity relation’ as a

new constant: Here,

RoS = {{a,c) €U xU: Thereissomé € U such that?(a, b) andS(b, c)},
R™' = {(ba): R(a,b)},
1" = {{a,a):ae€U}.

With these operations we can view the set of all binary relations as an algebra
Rel(U) = (Sb(U?),u,n, —,0,U x U,*, "1, 1),

called thefull algebra of binary relations on UAny subalgebra ofRel(U) is called analgebra of
binary relations (BRA) on U

Tarski has introduced a class of algebras which generalizes the notion of BRA:

A relation algebra (RA) (A, +,-,—,0,1,0,71 1) is a structure of type (2,2,1,
0,0,2,1,0) which satisfies

1| should like to thank Piero Pagliani for pointing this out.



1. (A,+,-,—,0,1)is a Boolean algebra.
2. (A, 0,71 1) is an involuted monoid.
3. For alla, b, c the following conditions are equivalent:

(@ob)-c=0, (atoc)-b=0, (cob™)-a=0 .

It can be shown that the class of RAs is equational. For the background and the relevant facts of RAs
the reader is invited to consult (Jo2) or (TG1).

A relation algebrad is calledrepresentablgf it is a subalgebra of a product of full algebras of binary
relations.

Now, we shall generalize RAs to rough structures (Co2): (L&) be an approximation space, and
setV = U x U. 6 defines in a canonical way an equivaleRéen V' by

(x,y) =29 (u,v) iff x=puandy =gv ,

and(V, 26) is an approximation space.
A rough relation on(U, #) is a rough subset dfi’, 26). In other words, a rough relation d, 9) is
apair(Sq, S,), whereS C V and for all{a, b) € V

(a,b) € Sy <% 0{a,b) C S,
(a,b) € Sy, &2 0la,b)NS#0 .
(Recall thatd(a, b) is the equivalence class of, b) with respect t6.)
Sbie(V) is a regular double Stone algebra by the results of the preceding section. We define the
additional relational operators cﬁ‘bie(V) as follows:
<Td7 Tu> © <Sd7 Su> = <Td © Sd, Tu © Su> )
(Sa: 807" = (S7h.801)
1 = (0,0) .
The structure{Sbfﬂ(V), U,n, * *,0,V,0, =1, (0,0)) is called thefull algebra of rough relations
over (U, §). Subalgebras ofb.?(V) are callechlgebras of rough relations
Rough relation algebras are a generalization of relation algebras, where the Boolean part is replaced
by a regular double Stone algebra, and the following set of axioms was proposed by (Co2):
A rough relation algebra (R) is an algebra
<L7 +, *7 +7 07 17 3 _17 1/>
such that

@. (L,+,-, *, 7,0,1)is a regular double Stone algebra,

(i), (z3y); 2= (y; 2),



(i), (z+y);z=2;24y;2
(v). z;1' =12 =z,

V). (79 =z,

Vi) (z+y)t=at 4y,
(vii). (
(viii). (27" (z;9)") -y =0,
(ix). (

(). (
(xi). (1) =1".

If B is a relation algebra, theB[?! becomes a rough relation algebra i#nd ! are defined compo-
nentwise. We shall denote this algebra&!ﬁ].

Itis clear that every full algebra of rough relations is @ARA rough relation algebra is representable,
if it is a subalgebra of a product of full algebras of rough relations.

Many equations which hold in RAs also hold i?&s. Some properties specific to rough relation
algebras are given in

Proposition 3.1. (Co2, Dul) LetL be an RA. Then,
1. B(L) is closed underand !, and1’ € B(L).
2. B(L) is arelation algebra and a subalgebra 6f
3. If L = Sb,9 (V) for some approximation space, th&{iL) = Rel(U/6).
4. D(L)is closed underand 1.
5. (z;y)™* =2y forall z,y € L.

Proof. 1. The closure of3(L) under; and1’ are just axioms (x) and (xi). Sincé distributes over
* and(a=!)~! = a, we have

¢ -a=0= (a*)_1 at=0=> (a*)_1 < (a_l)* ,
and conversely,
a—l . (a—l)* —0=aq- ((a—l)*)—l —0= ((a—l)*)—l S a* = (a—l)* S (a*)—l )

2. To show that L satisfies condition 3. for RAs, one can use 2.1. of (CT1) which goes through
unchanged. Clearly3(L) is a subalgebra aof.
3. This follows immediately from the definition & (L).
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4. Letx,y € D(L). Then,
l=z" =y~ =2y = (v;9)" ,
and thereforgz; y)* = 0.
5. Clearly,z < z** andy < y** imply
For the converse assume thaty)** < «**; y**. Then,(«**; y**) - (z;y)* > 0, and
(@™ (25 9)") - y™
(=5 (739)) -y
(@™ y) - (z;y)"
((z9) -y~ h) 2™
(z9) -y ") =
(z;y) - (z3y)"

LAVAER AVARR AV N2\ VY
o O o o o o

a contradiction. O O

Just like relation algebras ?Rs have very strong structural properties: An algehria adiscrimina-
tor algebraif there is some term operatighin the language ofi such that

c, ifa=0o,
a, otherwise.

fla,b,c) = {

A variety V is called adiscriminator varietyif it is generated by a clags of algebras such that some
term operatiory in the language o¥ represents the discriminator term as above on each member of
K. Discriminator algebras have, among others, the following pleasant properties, see (JAN1):

Proposition 3.2. LetV be a discriminator variety. Then,
1. Vis congruence permutable, congruence distributive, congruence extensile, and semisimple.
2. For every non trivial algebral in V the following are equivalent:

(@) Aissimple.
(b) A is subdirectly irreducible.
(c) Aisdirectly indecomposable.
3. There is an effective way of associating with each open Horn forpinahe language oV

an equatiorw,, in this language such that and o, have the same truth set in every simple
member o¥.



To show that RA is a discriminator variety we first state
Lemma 3.3. (Dul) LetL be an RA andy) € Con(B(L)). Then,
1. ¢, € Con(L).
2. Con(L) = Con(B(L)).
We now have
Proposition 3.4. (Dul) The variety of RAs is a discriminator variety.

Proof. It is enough to show that a simpleR L is a discriminator algebra. Far,b € B(L) we
denote the symmetric difference by b; recall thate = b < a ® b = 0. Set

T(a,b) =1; (™ @™ + at® b++); 1.

Then,

0, otherwise.

1, if
T(a,b)—{ , Fa#b,
Leta = b; then, since. is regulara™ = b** anda™ = b™ ", and thust** @ b** = ot @b = 0.
It follows that
[15 (@™ @ b™); 1]+ [1; (@™ @b ) 1] = L [(a™ @ b™)) + (a7 @ b F)] = 7(a,b) = 0.

Conversely, let # b. Then,a** # b** ora™™ # b*+. SinceL is simple, so isB(L) by Lemma 3.3.
We know from (Jo1l) that for a relation algebflaandx € A,

r#0s L;x;1=1.
Therefore,
(@™ @b™);1=10r1;(a™ *bT1);1=1,
sincea™, b**, a™T, b are Boolean. Consequently,
1=[1;(a*@b*); 1]+ [1; (a™ @ b7 1); 1] = 7(a, b).
Now, set
o(a,b,c)=r71(a,b) -a+71(a,b)*-c.

If @ = b, thent(a,b) = 0, and hencer(a,b,c) = 7(a,b)* - ¢ = c. If a # b, thent(a,b) = 1, and
therefores (a,b,c) = 7(a,b) - a = a. O O

Finally, the representable’Rs can be characterized as follows:



Proposition 3.5. (Dul) Suppose that = (B, F) is an RA. Then,L is representable if and only if
B(L) is a representable relation algebra aridsatisfies the equatiofx; y) ™+ = zT+; y*+.

Proof. Call an RA canonicalwhich satisfies the equation. To show the result, we first prove some
auxiliary results which seem interesting in their own right. Our first claim explains why we call these
algebras canonical:

Claim 1. (1) L is canonical if and only if
(a,0); {¢,d) = (a; ¢, b; d)
forall (a,b), (c,d) € (B, F).
Proof. “=": SupposeL is canonical, and lefa, b), (c,d) € (B, F). Then, there are,y € L such
thata = 27+, b= 2*,c = y*,d = y**, and
(++ o)yt +yxx) = x5y

= ((wy) ++, (z3y) * *)

= (z+Hy++,xxRy*kx) .
“<" Let (a,b),(c,d) € (B, F). Then,

({a, b)i (e, d)) ™ = {a; ¢, b;d) ™" = (a5 ¢, a5¢) = {a, a); (¢, ¢) = (a,b) "5 (e, d) T,

which proves the claim. O O
Claim 2. (2) For anyL, B(L)?] is canonical and, if. is canonical, theniit is asubalgebralML)?].
Proof. This follows immediately from the definition cBLQ] and Claim 1. O O

Claim 3. (3) If C'is (isomorphic to) a full relation algebrel (U), thenClQ] is isomorphic to a full
algebra of rough relations.

Proof. LetU’ = {2/ : x € U} be disjointfromU, and seV = UUU’. Define an equivalence relation
6 onV by identifyingz andz’, so thaz = {z, 2'}. Then,B(Ry ) andC are isomorphic as relation
algebras. LetR4, Rq) € B(Ry), and define

S=RU{(x,y):x,y € U,0x x 0y C —Ry}.

Then,Sq; = R4, S, = 1, and thus(R4, 1) € D(Ry) for eachR € C. Now, the mapping defined
by (R4, Ri) — (Rg,1) is a lattice isomorphism, and hené& Ry ) = D(Ry). It follows that
Ry = B(Ry)P = 2. O O

Now we can prove the Proposition:
“=" Itis enough to show that every full algebf&; of rough relations is canonical. L&t = Ry
be the full algebra of rough relations ovdV, §). Then,B(L) = Rel(U/6), and thusB(L) is a

representable relation algebra.



Next, let(Rg4, Ry), (S4, Su) € Ry. Then,

((Ras Ru), (Say Su))™™ = ((Ras Sy Ruy Su)) ™™,
= (Rg; Sa, Ra, Sa),

(Ra; Ra); (Sa, Sa),

(Ra; Ru)™™; (Sa, Su) ™

“«<" Suppose thal. = (B, F') is canonical, and thaB is a representable relation algebra. Since
L< B?] by Claim 2, we can assume thiat= B?]; furthermore, we may assume by 3.4 and 3.2 that
L is simple. ThenB is simple by 3.3, and, since it is representable, there is sonig sath that

B < Rel(U). It follows thatL = BP < Rel(U)?], which is representable by Claim 3. O O

In particular, the representable rough relation algebras form an equational class.

Relation algebras are a special case of the more general concept of Boolean algebras with operators.
Motivated by rough relation algebras, Steve (Co3) has investigated the theory of regular double Stone
algebras with operators.

4 Information Systems

In the previous sections we have looked at the algebraic structure arising from one given approxima-
tion space, and we have considered the special case when the underlying carrier set was the universal
binary relation on some other set. In this section we shall describe the algebraic structure of a set of
approximation spaces derived from an information system. It turns out that there is a close connection
between the resulting structures and cylindric algebras and their derivatives. The standard reference
for cylindric algebras are the books (HMT1, HMT2) and we shall refer to these for definitions and
results on these algebras. All results in this section are due to Steve Comer.

An information systent = (U, €2, V, f) as discussed e.g. in (Pal, Pa2), consists of

1. AsetU of objects,

2. Afinite setQ of attributes,

3. AsetV of attribute values,

4. An information functionf : U x Q — V.

We think of f(u, z) as the value which object takes at the attribute. With each@ C Q we can
associate an equivalence relattnon U by setting

a =g, b Lol fla,z) = f(b,x)forallz € Q,

so that(U, fp) is an approximation space.
Intuitively, a =g, b if the objectsz andb are indiscernible with respect to the values of their attributes
from Q. Given A C U, we denote its upper approximation with respedigoby Q A, and its lower
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approximation byp A. Clearly,Q is a closure operator oftb(U), C), andQ is an interior operator.
AsetA C U is calleddefinable with knowledg@ C €, if A is a union of equivalence classesff;
equivalently,A is definable from, iff QA = QA.

As an example — which uses rough relations — let us consider the following scenario: Suppbse that
is a set of car brand§) a set of attributes associated with cars, eajour, price, reliabilityetc,V a set

of appropriate attributes, anflan information function. LeR be a binary relation o/ which was
obtained by presenting to a subject two car models, and asking her to decide which she likes better. In
order to find out what were the decisive factors in her choice, we can now use rough set methods: Let,
as a simple exampl#, be the equivalence o which identifies cars by their colour. ifa,b) € R

and, sayp is red andb is green, we can infer that there is some evidence that she generally prefers
green cars over red ones, anddif= 2{colour} R , then she is never inconsistent in her choices with
respect to colour.

Theknowledge approximation algebfig associated witl$' is the structure

<Sb(U)7 U7 mv g ®7 Ua Q>Q§Q .

We note thatBg is a complete and atomic Boolean algebra with the additional closure operators

Q, Q C Q. IfQ C Q, the reductSb(U), U, N, —,0,U, Q) of Bg is denoted byRd,Bs, and it is

called anapproximation closure algebra

(Col) has proposed the following axioms for a class of algebras which are intended to capture the
knowledge approximation algebras associated with information systems: An @gebrd3, +, -, —, 0,1, kp) pco
is aknowledge approximation algebra of tyfe- called a KA, — if eachxp is a unary operator on

B, and

Al. (B,+,-,—,0,1)is a complete atomic Boolean algebra,
A2. kp0 =0,

A3. x < kpu,

A4, kp(z - KpYy) = KpT - KpY,

A5. If x # 0, thenkgz =1,

A6. kpugr = Kkpx - kQ, if X is an atom of B,

forall z,y € BandP,@Q C €. The class of all knowledge approximation algebras of t§pis
denoted byKA . We note that axioms Al — A4 tell us that for eaBhC (2, the reductRdpBs =
(B,+,-,—,0,1, kp) of B is a cylindric algebra of dimension CA;) in the sense of (HMT1). Thus,
we can regard the operatots as (in general non - commuting) cylindrifications, and it follows from
the corresponding properties of cylindric algebras that the properties given below hold:

Proposition 4.1. (Col) LetB = (B, +, -, —, 0, 1, kp) pco be an approximation algebra. Then,

1. Ifx <y, thenkpx < kpy.

10



2. KpkpX = KpT.

3. Zz RpT; = Hp(zi 1’1)
4. kp([; kpei) = I1;(kpwi).
The next result shows that the algebra associated with an information systéA is.a

Proposition 4.2. (Col) LetS = (U, Q,V, f) be an information system, ar¢ be its associated
knowledge approximation algebra. Then,

1. BKAQ,
2. EachRdg® is a cylindric algebra of dimension one.

Proof. 1. B is a complete and atomic Boolean algebra, and the operafi@ms closure operators.
This implies A1, A2, and A3. For A4 we need to show tltC N QD) = QC N QD for all
C,DCQ:

“C™ Letz € Q(CNQ@D). Then, there is somge C' N QD such that: =4, y. Hence,
z € QC, and, sinc&) D is a union off, classes, we also havec QD.

“O" Letz € QCNQD. Then, there arg € C, z € D such thatz =, y and
x =y, 2. SinceD is a union off, classes, we have in fagte @D, which shows that
r€Q(CNQD).
A5 follows from the fact thafp, = 2U. To show AG, letP, Q C (. Because of A5, we can suppose
that bothP and@ are not empty. Let, y € U; then,

ye PUQ{z} & y=puqu,
< fly,z)= f(z,2)forall z€ PUQ,
< f(y,z)= f(z,z)forall z€ P
andf(y,z) = f(z,z)forall z € Q,
& yOpx andybgw,
& ye PlaynQ{z}.

2. follows immediately from the definition. O O

In order to show that the converse also holds, i.e. that the models of the algelitAs,iare as
expected, we require some preparation. The definitiok/f, and Proposition 4.1 show thatch
element ofKA (, is a completely atomic normal Boolean algebra with operators, i.e. a completely
atomic Boolean algebra whose extra operators distribute over arbitrary joins, and do n@t. move

The completeness of the algebra and the operators imply thatkgathalready determined by its
values on the atoms of the Boolean darof 8. Theatomic structuréit(B) of B is (At(B), Tp) pca,
where At(B) is the set of atoms dB, and for eachP C Q, Tp is the relation

{{z,y) € At(B) x At(B) :y < kpz} .

11



Proposition 4.3. (Col) LetS be an information system a8 be its associatellA o with atomic
structureAt(Bg). Then, forallP, @ C €,

1. Tp is an equivalence relation,
2. Ty = 2At(Bs),
3.TpN TQ = TPUQ-
In particular, At(Bg) is an — subsemilattice of the partition lattidé(At(Bg)).

Proof. 1. We show thattTpy < kpx = kpy, from which the claim follows: Leyy < xpz, and
assume that £ xpy. Then, sincer is an atom ofB, we haver N kpy = ), and A2 and A4 imply
thatxpx N kpy = (). This contradicty < xpx. The other direction is obvious.

2. is an immediate consequence of A5.

3."C" Let (x,y) € Tp N1y, i.e.kpr = kpy andrgr = kgy. Sincex andy are atoms and using
A4 we obtain

KpuQT = kpX N KQT = KpY N KQY = KPUQY-
“D" Let (z,y) € Tpug. Then, using A6,
T < KpUQT = KPuQY < KPY NKQY
shows that:Tpy andzTyy. O O

A relational structurd, = (U, Tp) pcq is called &knowledge approximation atom structyiiefor all
P,Q cq,

1. Tp is an equivalence relation dn,
2. Ty = U,
3.TpN TQ = TPUQ-

If ©2is finite and not empty, we can associate with each such structure an information sygtem
the following way: For each € 2 let V(z) be the set of blocks dfy,;, and set’ = | J ., - Then,
define the knowledge functiof: U x Q — V by

f(u,x) = The block ofT},, containingu.
It is easy to see thaf(L) = (U, Q, V, f)is an information system. Furthermore,

Proposition 4.4. (Col) LetB be a KAy, € finite, and. = At(B) be its atomic structure. Then,
B =Bgp.

12



Proof. The carrier seBgy,y of B (1) is the power set ofit(B). Thus, the mapping : B — Bg(y,)
defined byy(b) = {z € At(B) : = < b} is a Boolean isomorphism.
Now, letz € B, andP C ). We need to show that

(4.1) g(wEx) = kp P g(a) .

This is clearly true ifP = (), so that we can suppose that# ); indeed, by A6 we may assume that
P is an atom ofSb(Q2), say,P = {a}. Furthermore, by the additivity of g angr, we may suppose
thatx is an atom ofB.

Lety be an atom of3. Then,

y€g(kpr) & y<rkpzw
& yIpx
& Tpy =1Tpx
& flz,0) = f(y,a)
< yOpx
& yebpr= HfS(L){L’ = /ifs(“g(x),
and we are done. O O

This shows that the axioms for knowledge approximation algebras are complete for the intended
models. A converse for the second part of 4.2 is given by

Proposition 4.5. (Col)

1. Every complete atom{CA; is isomorphic to an approximation closure algebra.

2. EveryCA; is embeddable into an approximation closure algebra.
Proof. 1. Let(B, ¢y) be a complete and atom@A ;, and{2 be a nonempty finite set. For each non
emptyP C Qletkpz = coz; also, letkgz = 0if x = 0, andkgz = 1if x > 0. Then,(B, kp)pca
is an approximation algebra, and the rest follows from 4.4
2. By 2.7.20 of (HMT1), eaclCA; is embeddable into a complete and atomic one. [J O

The situation regarding the decidability of the first order theoAt, is rather disappointing, though
not altogether unexpected:

Proposition 4.6. (Col)
1. If || = 1, then the theory okA g is decidable.
2. 1f2 < |Q| < w then the theory dKA , is undecidable and finitely inseparable.

Proof. 1. Let|Q2] = 1. Then, the algebras KA , are of the form(B, kg, ka), where(B, kq) is a
completely atomicCA, andkq, is definable in the Boolean part. It was shown in (HMT1) that the
theory of complete atomi€CA; 's is the same as the theory of fini@; 's, and that it is decidable.

2. LetEq be the theory of two equivalence relations; it is known tBatis finitely inseparable, see
(Mo1l). There itis also shown that to prove that a theBiig finitely inseparable, it is enough to show
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There are formulagvy, Rvgvi, Svgv; in the language of " such that for every finite
modelA = (X, R, S) of Eq there is a finite modeB of 7" such that(GB, EB, §B> >~ A.

Letr,s € Q, r # s. We first give a translation d&q into the language dfA :

Ovg : wglisan atom.
Rugvy : Bvg A Buy A K{r}V0 = K{r}V1.
Svovr : Bug A Bug A K{s}V0 = K{s)}V1-

If we apply the translation to sonig ¢ KA q, it follows from Proposition 4.3 thatAt(B), R, §%>
is a model ofeq.
Finally, letA = (X, R, S) be a finite model oEg. We obtain a knowledge approximation atom
structureL = (X, Tp) pcq by setting

1. Tyy =R, Ty =S, Ty =Ty = *Xforalli € Q,i & {r, s}.

2. Tp =T i€ P}, forall P C Qwith [P| > 2.
If A is finite, so is Bgy), and it is straightforward to show thal(At(B),E%,
5 is isomorphic tA. O

In (Co2) a close connection of knowledge approximation algebras to a variant of diagonal free cylin-
dric algebras was established. Since a discussion of these results would require an unproportional
amount of new definitions and notation, we refer the reader to Comer’s paper.
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