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Abstract

The main statistics used in rough set data analysis, the approximation quality, is of limited
value when there is a choice of competing models for predicting a decision variable. In keeping
within the rough set philosophy of non—invasive data analysis, we present three model selection
criteria, using information theoretic entropy in the spirit of the minimum description length prin-
ciple. Our main procedure is based on the principle of indifference combined with the maximum
entropy principle, thus keeping external model assumptions to a minimum. The applicability of
the proposed method is demonstrated by a comparison of its error rates with results of C4.5, using

14 published data sets.
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Introduction

Most of the commonly used procedures for data prediction require parameters outside the observed
phenomena, or presuppose that the properties are of a quantitative character and are subject to random
influences, in order that statistical methods such as variance analysis, regression, or correlation may

be applied.

One method which avoids external parametersigh set data analysi&RSDA); it has been devel-

oped by Z. Pawlak and his co—workers since the early 1970s (Pawlak, 1973, Konrad, Ortowska &
Pawlak, 1981a,b, Pawlak, 1982), and has recently received wider attention as a means of data analysis
(Pawlak, Grzymata-Busse, Stawgki & Ziarko, 1995). The rationale of the rough set model is the
observation that
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“The information about a decision is usually vague because of uncertainty and impreci-
sion coming from many sources. Vagueness may be causeddnanularity of repre-
sentation of the information. Granularity may introduce an ambiguity to explanation or
prescription based on vague information” (Pawlak & Sthoskii, 1993).

In other words, the original concept behind the model is the realization that sets can only be described
“roughly”: An object has a property

e CERTAINLY, e POSSIBLY, e CERTAINLY NOT.

This looks conspicuously like a fuzzy membership function, and indeed, on the algebraic — logical
level, we can say that the algebraic semantic of a rough set logic corresponds to a fuzzy logic with a
three - valued membership function (see Duntsch, 1997, Pagliani, 1997).

Rough set analysis uses only internal knowledge, and does not rely on prior model assumptions as
fuzzy set methods or probabilistic models do. In other words, instead of using external numbers or
other additional parameters, rough set analysis utilizes solely the granularity structure of the given
data, expressed as classes of suitable equivalence relations. Of course, this does not mean that RSDA
does not have any model assumptions; for example, we indicate below that the statistical model behind
RSDA is theprinciple of indifferenceHowever, model assumptions are such that we admit complete
ignorance of what happens within the region of indiscernibility, given by the granularity of information
(see Section 2.1).

The results of RSDA must be seen with this background in mind: The rough set model tries to extract
as much information as possible from the structural aspects of the data, neglecting, in its pure form,
numerical and other contextual information of the attribute domains. This keeps model assumptions to
a minimum, and can serve as a valuable indicator of the direction into which possible further analysis
can go.

The relationship between RSDA and statistical modeling is quite complementary (see Table 1), and
we have discussed it in more detail in Dintsch & Gediga (1997b).

Table 1: RSDA vs statistical modeling

RSDA Statistical models
Many features/attributes, few data pointsew variables, many data points

Describing redundancy Reducing uncertainty
Top down, reducing the full attribute sgt Bottom up, introducing new variables

Knowledge representation in the rough set model is donafeéamation systemwhich are a tabular
form of an BJECT — ATTRIBUTE VALUE relationship, similar to relational databases (see Section
2.2).



If Q is a set of predictor features ard decision attribute, then RSDA generates rules of the form

(1.1) /\J:q:'mqémd:mg\/xd:mé\/...\/xdzmlj,
q€q

wherez" is the attribute value of objeatwith respect to attribute.

We see that in the rough set model rules can be indeterministic in the sense that on the right hand side
of (1.1) we can have a proper disjunction. If there is only on term on the right hand side, we call the
rule deterministic Whereas RSDA handles deterministic rules in a straightforward manner, the status
of the indeterministic rules remains unclear.

If rules are based on a few observations only, the granularity of the system is too high, and the rule
may be due to chance. In order to test the significance of rules, one can use randomization methods to
compute the conditional probability of the rule, assuming that the null hypothesis

“Objects are randomly assigned to decision classes”

is true. In Duntsch & Gediga (1997c) we have developed two simple procedures, both based on ran-
domization techniques, which evaluate the validity of prediction based on the principle of indifference,
which is the underlying statistics of RSDA,; this technique is briefly described in Section 2.4.

Although randomization methods are quite useful, they are rather expensive in resources, and are only
applicable as a conditional testing scheme:

e Though they tell us when a rule may be due to chance, they do not provide us with a metric
for the comparison of two different rul€gd — d, R — d, let alone for different models of
uncertainty.

Thus, we need a different criterion for model selection: Tiaimum description length principle
(MDLP) (see Rissanen, 1978, 1985) states that the best theory to explain a given phendrigenon
one which minimizes the sum of

e The binary length of encoding a hypothe§isand

e The binary length of encoding the decision datasing the hypothesi9 as a predictor.

In the sequel, we present three different ways of model selection within RSDA, based on three differ-
ent probability distributions in the spirit of the MDLP. Withé@ach model framé/, the attractiveness

of this approach is that information about the uncertainty of rules such as (1.1) is considered in a
context where the selection criteriégh (Q — d) is the aggregate of the

¢ Effort of coding a hypothesiQ, expressed by an entropy functiéf(@), and

¢ Uncertainty of “guessing” in terms of the optimal number of decisions to classify a randomly
chosen observation given this hypothesis, expressed as a suitable effrdgyQ).

The paper is organized as follows: In Section 2 we describe the basic tools of RSDA and their main
properties, as well as our usage of the entropy functions. Section 3 contains our three approaches to
uncertainty, and Section 4 applies our main approach to some well known data sets. Finally, Section
5 consists of a summary and an outlook.



2 Basic tools and constructions

2.1 Approximation spaces

An equivalence on a setU is a transitive, reflexive, and symmetric binary relation, and we call the
pair (U, #) anapproximation spacdn our context, we shall sometimes call an equivalence relation an
indiscernibility relation Approximation spaces are the core mathematical concept of RSDA, and their
usage reflects the idea that granulation of information can be described by classes of an indiscernibility
relation.

Recall that a paition P of a setlJ is a family of nonempty, pairwise disjoint subsetdbfvhose union
is U. With each equivalence relatidhwe associate a partitighy of U by specifying that, b € U
are in the same class &%, if and only if a6b. The classes dPy have the form

fa = {b e U : abb}.

By some abuse of language, we also speak of the classes of an equivalence relation when we mean
the classes of its associated partition, and@athe class of modulof.

The interpretation in rough set theory is that our knowledge of the objedtsartends only up to
membership in the classes@éfand our knowledge about a subséof U is limited to the classes of
6 and their unions. This leads to the following definition:

For X C U, we say that
XdﬁfU{Hm’ :0r C X}
is thelower approximatioror positive region of Xand
x4 U{Hm cxe X}
is theupper approximationor possible regiorof X.
If X C Uisgiven by a predicat®& andz € U, then
1. x € X means that certainlyhas propertyP,
2. x € X means that possiblyhas propertyP,
3. z € U\ X means that definitelydoes not haveropertyP.

Thearea of uncertaintgxtends over
X\ X,

and thearea of certaintyis
XU-X.



Figure 1: Rough approximation

& 2
K
="
=
[~ N
)
]
Z]
. e T O
2.2 Information systems

Knowledge representatlon'm‘RSIZfA“Is'ddrfé‘\lla relational tablesnfarmation system

Livacin s proe rnaliam of 3

I r\.n:‘-l :|p|1| CQJQ:IJ‘/:]’ fq>q€ﬂ

consists of
1. Afinite setU of objects,
2. Afinite setQ2 of attributes,
3. Foreachy €

o AsetV, of attribute values,
e Aninformation functionf, : U — V.
In the sequel we shall ugeas above as a generic information system With=n andP, Q, R C €.

We also will sometimes write? instead off,(x) to denote the value af with respect to attribute.
Furthermore, we suppose thate (2 is a decision attribute which we want to predict with attribute

sets@, R C Q.

Example 1. We use the small information system given in Table 2 on the next page as a running
example to illustrate the various concepts developed in the sequel. An attribute “Heart Disease” (HD)
shall be predicted from two variables “Smoker” (S) and “Body Mass Index” (BMI). O

With each we associate an equivalence relatiignon U by defining

T =0, y <L (Vg € Q) fy(x) = foly),



Table 2: An example of an information system

No| S [ BMI | HD |

© 0 ~NO Ol WN B

no
no
no
no
yes
yes
yes
yes
no

normal
obese
normal
obese
normal
normal
obese
obese
normal

no
no
no
no
yes
yes
no
yes
no

and the partition induced W, is denoted byP () or simply byP(Q).

The interpretation oflg is the following: If our view of the worldJ is limited to the attributes given

by @, then we will not be able to distinguish objects within the equivalence classgs of

Example 1. cont

The classes dfy andd, are as follows:

Q

Classes of

{s}
{(BMI}
{S, BMI}

{1,2,3,4,9}, {5,6,7,8}
{1,3,5,6,9}, {2,4,7,8}
{1,3,9},{2,4}, {5,6},{7,8}

d

{HD}

{1,2,3,4,7,9}, {5,6,8}.

a

We can now use the definition of upper, resp. lower approximation of setéyvaefined in the
previous section. It is not hard to see thatYoC U,

2.1) Y ={zeU:0p2nY £0}

is the upper approximation of with respect tay, and

(2.2) Yo={zeU:bgzCY}

is the lower approximation df with respect taQ. If @ is understood, we just writg orY'.

The equivalence relatior) are used to obtain rules in the following way:



Let@Q — d C P(Q) x P(d) be the relation

(X,Y)eQ—>d&% x cY®.

Observe that by (2.1),
X cY%ifandonlyif X Y9 #£ 0 ifand onlyif X N Y # 0,
and thus,
(2.3) (X,V)eQ—d< XNY £0.
Observe that we can determine with the knowledge gained §ominetherX N'Y = () and also — by

(2.2) —whethetX C Y

A pair (X,Y) € Q — dis called aQ,d — rule(or just a rule, ifQ) andd are understood), usually
written it asX — Y. By some abuse of language we shall also €al- d a rule when there is no
danger of confusion, and normally identify singleton sets with the element they contain.

If (X,Y) € Q — d, thenX corresponds to the left hand side of the implication (1.1), &nd

corresponds to (one of) the disjuncts of the right hand side.

Example 1. cont
The ruleS — H D consists of the pairs

({1,2,3,4,9},{1,2,3,4,7,9})
({5,6,7,8}.{1,2,3,4,7,9})
<{57 67 77 8}7{57 67 8}>7

BMI — HD has the pairs

({1,3,5,6,9},{1,2,3,4,7,9})
({1,3,5,6,9},{5,6,8})
(2,4,7,84.{1,2,3,4,7,9})
<{27 47 77 8}7{57 67 8})7
and for{S, BM1I1} — HD we obtain
({1,3,9},{1,2,3,4,7,9})

({2,4},{1,2,3,4,7,9})

({5,6}.{5,6,8})
({7,8}.{1,2,3,4,7,9})
(

{7,8}.{5,6,8}).



Thedeterministic- or functional- part ofQ — d, written as@ det d, is the set

(X, Y)eQ—d:XCY}

If (X,Y) € Q def d, then the clas« is calledd — deterministior justdeterministi¢if d is under-

stood. In this case, the values of each U on the attributes i) uniquely determine the values of
with respect to the attribute values@f

Example 1. cont
The deterministic classes ¢5, BMI} — HD are{1,3,9},{2,4}, {5,6}; the only deterministic
classof{ S} — HDis{1,2,3,4,9}, and there is no deterministic class{@@M1I1} — HD. O

fQ—-d=0Q def d,i.e. ifQ — dis afunction, then we call) — d deterministiand writeQ) = d;

in this case, we say thdtis dependent of. It is not hard to see that
Q = difandonlyiffgy C 04,

so that our terminology is in line with the usual convention in RSDA.

A special role will be played by the deterministic part@f— d, and we define

def

VQ—»d lef det

U{ixeP@ (x,v)e@ ™ d}

In other words Vg _.4 is the union of alld — deterministiddg classes. ) — d is understood, we
shall just writeV instead ofl/5_.4. Note that

(2.4) n—|V|=0o0rn—|V|>2,

since every singleton class & is deterministic for anyl. A classY” of 0, is calledQ — definablgor
justdefinableif @ is understood), it” C V.

Example 1. cont
The deterministic parts are easily seen to be

VS—>HD = {17 27 37479}7 VB]V[I—>HD - ®7 V{S,B]V[I}—»HD = {17 27 374757679}' o

Even though RSDA is a symbolic method, it implicitly makes statistical assumptions which we briefly
want to describe, and we start by looking at a single equivalence retatio/. The inherent metric
of an approximation systeiit/, #) is theapproximation quality

def | Xp| + =X,
(2.5) Yo(X) = JT,

(Pawlak, 1991, p. 16ff). If is understood, we shall usually omit the subscripts.

The valuey(X) is the relative frequency of objects bf which can be correctly classified with the
knowledge given by as being inX or not. The functiorny can be generalized for information
systems (Pawlak, 1991, p. 22); we choose a different (but equivalent) definition which is more suited
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for our purpose. As a measure of the approximation qualitg) ofith respect tad, we define an
approximation functioy

_ |U{X € P(Q) : X isd—deterministi¢|

2.6 —d
Note that
V]
—d) = —,
and

Q= difandonly ify(Q — d) = 1.

Example 1. cont
We see that

5 0

VS—HD = g» YBMI~HD = gs {S.BMI}—HD = g~ U

NN

Itis not hard to see that the statistical principle underlying the approximation functiongisrbgple
of indifference

¢ If one does not have any information about the occurrence of basic events, they are all assumed
to be equally likely.

Q is called areduct ofd, if it is minimal with respect to the property that@Q — d) = 1. Reducts are
of particular importance in rough set theory as a means of feature reduction.

2.3 Data filtering and discretization

Even though RSDA has no inherent categorization mechanism, it is possible to handle continuous data
satisfactorily in several ways. One method which keeps close to the RSDA philosophy of keeping
outside assumptions to a minimum is the filtering procedure described in Dintsch & Gediga (1998)
which is based only on the information provided by the indiscernibility relations. This technique
collects values of a feature into a single value by taking a union of deterministic equivalence classes
which are totally contained in a class of the decision attribute; in this way, the underlying statistical
basis of the rule may be enlarged, and the significance of the rule is increased (see Section 2.4).

For example, if we have an attribujeand a rule
If ¢ =2 o0rq=3orqg=>5thend =blue,
then we can collect 2,3,5 into a single attribute value.of

The important feature of this procedure is that the internal dependency structure of the system is kept
intact, and that we do not need additional parameters. In other words, this step can be regarded as a



part of the operationalization procedure; it can be implemented as a cheap standard algorithm if the
decision attribute is fixed, for example, in our rough set engiRe®BAN (Duntsch & Gediga, 1997a).

Even though the method is simple, it sometimes works surprisingly well as the investigations of
Browne, Diintsch & Gediga (1998) and Browne (1997) indicate. Nevertheless, this discretization
scheme cannot cope effectively with complex interactions among continuous variable as other, more
sophisticated, discretization methods do. For these methods applicable in RSDA (which, however,
use external parameters and restrictive modelling assumptions) we invite the reader to cawesult B
(1997) or Nguyen & Nguyen (1998) and the references therein.

The claim that RSDA is not applicable to most real life problems, because it cannot handle contin-
uous variables seems to us to be an open problem, but not a fact. The success of applications of
fuzzy controlling, which also requires discretization of continuous data, shows that the distinction
of “continuous data” vs. “discrete data” does not necessarily imply that there is a need for different
“continuous methods” , respectively, “discrete methods”, to handle these different types of data. We
also refer the reader to Section 4 below, in which the prediction quality of our RSDA based methods
is explored also for data sets which consists of continuous variables.

2.4 Significance testing

Suppose that we want to test the statistical significance of thegJule d. Let ¥ be the set of all
permutations of/. For eachr € ¥, we define a new set of feature vectafsby

o(x)d, ifr=d,

(2.7) af, &
x”, otherwise

In this way, we permute the¢ values according te-, while leaving everything else constant. The
resulting rule system is denoted by — o(d). We now use the permutation distributi¢n(Q —
o(d)) : o € ¥} to evaluate the strength of the predictiQn— d. The valuep(~v(Q — d)|Hp)
measures the extremeness of the observed approximation quality and it is defined by

o €2:9(Q — () > (@ — d)}]
U

(2.8) p(y(Q — d)|Ho) :

If « = p(v(Q — d)|Hy) is low, traditionally below 5%, we reject the null hypothesis, and call the
rule significant otherwise, we call itasual Failure to reject the null hypothesis does not mean that it
is true, and thus, such randomization tests are a necessaijiaofat significance (for a discussion,
see Cohen, 1990).

Randomization is a statistical technique which does not require a representative sampling from a
population which is a theoretical generalization of the sample under study, because the randomization
procedure uses only information within the given sample, well in accord with our stated objective.
This aspectisin contrast to most other statistical techniques. Even the bootstrap technique needs some
parametric assumptions, because one has to suppose that the percentages of the observed equivalence
classes are suitable estimators of the latent probabilities of the equivalence classes in the population.
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Example 1. cont
Table 3 tells us the approximation qualities and the significance of thé$gt§ BM I}, and{.S, BM1}
for the prediction ofH D for the example information system of Table 2.

Table 3: Approximation quality and significance of predicting attributes

Attribute Set| ~ Significance Interpretation
{S} 0.556 0.047 | not casuald¢ = 5%)
{BMI} 0.000 1.000 casual { = 5%)
{S,BMI} |0.778 0.144 casual & = 5%)

The best approximation quality is attained by the combination of both predicting attrislaes

BM1I. However, in terms of statistical significance the §8t BM I} is not a significant predictor

for the outcome off D, because there is no evidence that the prediction success is not due to chance.
Therefore, although the approximation quality{af} is smaller than that of S, H D}, the set{ S}

should be preferred to predief D, because it is unlikely that the prediction success is due to chance.

O

In most applications one can observe that there are several reducts or attribute sets with an acceptable
approximation quality. Significance testing gives some information about their statistical validity, but
there are often several sets with comparable good statistical quality. Thus, we need an additional
criterion for model selection, the foundations of which will be laid in the next section.

2.5 Partitions and Information Measures

Let P be a partition ofU with classesX;,i < k, each having cardiig&y r;. In compliance with
the statistical assumption of the rough set model we assume that the eleméh@@frandomly
distributed within the classes &, so that the probability of an elemenbeing in classY; is just’:.
We define theentropyof P by

k .
(2.9) HP)E Y % logy(—

r
i=0 t

).

If 6 is an equivalence relation dii andP its induced partition, we will also writé/ (9) instead of
H(P). Furthermore, if) is a set of attributes, then we usually wri () instead off (6g).

The entropy estimates the mean number of comparisons minimally necessary to retrieve the equiva-
lence class information of a randomly chosen elemert U. We can also think of the entropy of

P as a measure of granularity of the partition: If there is only one class,&én) = 0, and if P
corresponds to the identity, thenH (P) reaches a maximum (for fixed). In other words, with the
universal relation there is no information gain, since there is only one class and we always guess the
correct class of an element; if the partition contains only singletons, the inclusion of an element in a
specific class is hardest to predict, and thus the information gain is maximized.

11



For two partitionsP;, P, of U with associated equivalence relatiohs 62, we write P; < P, if
#; C 65. The following Lemma may be known:

Lemma 2.1. If P, < Py, thenH (Py1) > H(Po).

Proof. Since every class @?, is a union of classes @?;, we can suppose without loss of generality
that the probabilities associated with areps, ..., pn, m > 3, and those associated withy are
P1+ D2, P35 - - - Pm- NOW,

H(Pl) :H(pl,.., apm)

= H(p1 +p2,p3, .- 0m) + (p1 +p2) - H(

( b1 b2 )
p1+p2’ p1+Dp2

b1 P2 )
p1+p2’ p1+ D2

= H(P2) + (p1 +p2) - H

> H(P2),

see for example Jumarie (1990), p.21. O
Corollary2.2. If R C Q C Q,thenH(R) < H(Q).

More classes does not automatically mean higher entropy, and we need a hypothesigsuctas
for example,

111 21
1585~ H(-, -, = H(-, -,
For later use we mention that the entropy function has
1990, p 21):

) & 1.447

[ @IH
O =

he property of strong additivity (see Jumarie,

Lemma 2.3. Suppose thafz; : ¢ <t} and{7; ; : j < n;} are sets of positive parameters such that
DLEDPLIES
i<t j<n;

Then,

ZmlogQ )+ D Fir D i logs (-

il J i<t i<t j<n;

Z Z T J log2

i<t j<n;

3 Rough set prediction

The problem we want to address is a variant of the classical prediction problem:

e Given a decision attributé, which is the “best” attribute s&p C 2 to predict thed — value of
an objectr, given the values af under the features contained@?

We say “a variant”, since the RSDA rules are determined by the equivalence classes of the partitions
of U involved — see (1.1) and (2.3) —, and we are combining prediction quality with feature reduction.

The prediction problem raises two questions:

12



e Which subsets§) of 2 are candidates to be such a “best” attribute set”?
e What should a metric look like to determine and select the “best” attribute set?

In conventional RSDA, the approximation qualifyas defined in 2.6 on page 9 is a measure to
describe the prediction success, which is conditional on the choice of attributes and measurement by
the researcher. However, approximation qualities cannot be compared, if we use different feature sets
@ and R for the prediction ofi. To define an unconditional measure of prediction success, one can
use the MDLP idea of combining

e Program complexity (i.e. to find a deterministic rule in RSDA) and
e Statistical uncertainty (i.e. a measure of uncertainty when applying an indeterministic rule)

to a global measure of prediction success. In this way, dependent and independent attributes are
treated similarly.

In the sequel we discuss three different modédldo handle this type of uncertainty, which are based
on the information — theoretic entropy functions of Section 2.5. Our model selection criterion will be
an entropy valuéf* (Q — d) which aggregates for each sgtof attributes

e The complexity of coding the hypothesis measured by the entrogy(Q) of the partition of
its associated equivalence relatign (see (2.9)), and

e The conditional coding complexitf  (d|Q) of d, given by the values of attributes i,

so that
(3.1) HY(Q —d) = H(Q)+ HY(dQ).

The estimato? M (d|Q) measures the uncertainty to predict membership in a claksgien a class
of fp; itis important, if we want to gauge the success of a model itmme:d to the knowledge given

by Q.

The importance off (Q — d) is due to the fact that it aggregates the uncertaiiity (d|Q) and

the effort H (@) of coding the hypothesis, i.e. the predicting elements. This enables the researcher to
compare different attribute sef in terms of a common unit of measurement, which cannot be done
by a conditional measure of prediction successHile H (d|Q).

Since all our entropies are defined from probability measures which arise from partitions.6f an
element set, we see from the remarks after (2.9) that they have an upper baugd of.

In order to be able to compare different entropies within one mbflele define anormalized entropy
measure- bounded withir0, 1] — as follows: IfH (d) = logy(n), i.e. if 4 is the identity, then

1, if g =6y,

SMQ—d) = |
0, otherwise.

13



If H(d) < logy(n),

My _, gy def _HM(QHd)—H(d)
(3.2) SY(Q—d) =1 logy(n) — H(d)

The measure§™(Q — d) are constructed in such a way that they are comparable to the approxima-
tion quality:

e If SM(Q — d) = 1, the entropy measure is as good as possible, wh&¥d&) — d) near 0
shows that the amount of coding information is near the theoretical maximum, which indicates
a poor model for predicting the attribuie

Similarly, based on the boun@s< HM (d|Q) < log,(n), we can normalizél* (d|Q) by

HY(d|Q)

M 1
(3.3) SMd|Q) = 1 ROR

We shall show later that the measuf£¥ (d|Q) are comparable — and in a special case even identical

— to the approximation quality.

We assume that prediction requires the specification of a probability distribution; the three models
presented below are distinguished by the choice of such distributions and their respective associated
parameters.

Throughout, we suppose that the classeégpare X, . .. , X; with r; def | X;|, and that the classes
of 4 areYy, .. .Y,. Furthermore, we lat < t be such that

V=XyU...UX,,

i.e. theX;, i < ¢, are exactly the deterministic classesfgf. In accordance with our previous
observations, we assume the principle of indifference, anﬁlisfleei i fori < t. Also, we shall write
~ instead ofy(Q — d), if @ andd are understood.

3.1 Prediction I: Knowing it all

The first approach is based on the assumption that structure and amount of uncertainty can be esti-
mated by the interaction efand(@. In this case, each class of 6 determines probability distribu-
tions based on its intersection with the classe;ofThis assumes that we know

1. The classes df;,
2. The classes dify, and
3. Their interaction, i.e. their intersections.

It follows that, in order to justify any prediction, we have to assume that the data set is a representative
sample. This is a general problem of data mining, and we have discussed it within the rough set
approach in Duntsch & Gediga (1997c).
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Uncertainty in the sense of this model is not predominantly a feature of the predicip¢asintended

by RSDA) but a local feature of the intersection of equivalence clak¥se9 andY € 6;. We shall

show that the procedure “first code the rules and then apply them” has the same complexity as the
simple procedure “guess withéily N 63" and can be viewed as identical from this point of view; in
other words, we are guided by a purely statistical view. Although this is rather different from the
RSDA approach, there is has been some effort to adopt this approach in the RSDA context (Wong,
Ziarko & Ye, 1986); we shall discuss some aspects of this work below.

The partition induced by'oc def 8o N 6, are the nonempty sets {oX; NY; : i < t,j < s}, andits
associated parameters are defined by

N X;NY;
(34) Vi,j = 7‘ n j‘ .
Thus,
R 1
(3.5) H(0®) =YY i logy(5—)
i<t j<s b

Now, we define

H°YQ — d) = H(6°°).

In information theory,H'°(Q — d) is usually written asf (Q, d); we use the notation above to
emphasize that our view of the world consistgband that we want to prediat

One problem with this approach is the symmetry
HlOC(Q N d) _ HIOC(HQ ﬂ@d) _ HlOC(d N Q)

We shall not discuss this problem here, but instead refer the reader to Jumarie (1990), p. 24ff and p.
49ff, and Li & Vitanyi (1993), p. 65ff.

The proof of the following proposition is straightforward and is left to the reader.
Proposition 3.1. Letd, Q C . Then,

1. H"(Q — d) > H(d),

2. H°¢(Q — d) = H(Q) ifand only ifdg C 6,.

Applying (3.2), a normalizedbc-entropy measuré'*<(Q) — d) is definable and — givefl (d) <
log,(n) — we obtain
H"¢(Q — d) — H(d)

loc N —1_
SR =) =1 ) - B ()

Foreach <t, j <slet

A~

of |Xi NYj|
fij = ——2.

T
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This is the estimated probability of an elementtfbeing in the class(; N Y;. In other words, it is
the conditional probability of € Y}, given thatr € X;. Observe that

D= g =1
i<t j<s
so that the parametefig and), ; satisfy the hypotheses of Lemma 2.3, and that furthermore

) X;NY; .
(3.6) Mg = % Vij-

Substituting (3.6) into (3.5) and applying Lemma 2.3 we obtain

HlOC(Q_>d _|_Z7TZ an log2 H( Z - Z"?w 10g2

i<t 1<s i=c+1 1<s

the latter since); ; = 1 for i < c. The conditional entropy of given( is now

1
37 Q) S S Y iy ol )
i=c+1 1<s ?7
This is the usual statistical definition of conditional entropy. Its normalization leads to the expression
Hloc d
see(a@) = 1 - D)
logy(n)

Example 1. cont Table 4 shows the statistical information analysis of prediction quality within the
example information system of Table 2 on page 6.

Table 4: Statistical information measures of predicting quality

Attribute Set| H°S(Q — d) S°%(Q — d) | H°(d|Q) S°°(d|Q) | ~

(S} 1.352 0.808 0.361 0.835 | 0.556
(BMI} 1.891 0.568 0.900 0.587 | 0.000
(S, BMI} 2.197 0.432 0.222 0.814 | 0.778

Although both measures§'°c(Q — d) andS'°¢(d|Q) vote for {S} as the best predicting set for the
given data — and are in line with the results of the significance test (see Table 3 on page 11), this
convergence need not to be true in the general case. O

Example 2. Some simple examples shall demonstrate how the average uncertainty meaStires
and the approximation qualitywork, and how they differ:

Suppose thaj; andd take the value$, 1, and suppose that we observe the probabilities

=0 qg=1|
d=20 1/4 1/4 1/2
d=1 1/4 1/4 1/2
1/2 1/2 1
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We calculatef!'*¢(q; — d) = 2, andH'"¢(d|q;) = 1.

Now, consider another attribuge with valuesD, . . . 3, and the observed probabilities

=0 @=1 @=2 @=3|)>

d= 1/4 1/16 1/16 1/8 | 1/2

d= 0 3/16 3/16 1/8 | 1/2
Z 1/4 1/4 1/4 1/4 1

Whereasy, enables us to predict 25% of the cases deterministically, namely, by the rule
If ¢o =0, thend = 0,

whereasy; cannot be used to prediét

Comparing the entropy measures, we observe igft(g; — d) = 2.6556 > H°°(q — d) = 2,

and H'°%(d|gz) = 0.6556 < H'°°(d|q;) = 1. Whereas the entropy measu&°(Q — d) favors

q1, the conditional entropy measuf&'°<(d|Q) votes forg, to be the better predicting attribute. The
explanation of this effect is simple: Although in the first example the two large classes predict obvi-
ously nothing, the encoding of these small number of classes can be done effectively. The prediction
success in the second table is overruled by a large number of small classes with high uncertainty,
causing a high coding complexity. If we subtract the coding complexity of the predicting attribute,
the effect of the high coding effort is eliminated, and the better prediction succegsesults in a
smaller conditional entropy measure.

A third table presents an example WHy<(d|Q) is not optimal for rough set prediction under certain
circumstances:

=0 @=1]|>

d=01| 7/16 1/16 | 1/2

d= 1/16 7/116 | 1/2
S | w2 12 |1

Althoughgs predicts no outcome deterministically, the conditional meagitPé(d|q3) = 0.5436 is
better thanH'°(d|q:) = 0.6556. The essence of the result is that a bet giyers preferable to

a bet based on,. Having the knowledggs = 0 enables us to predict that the outcome= 0 is
much more likely thanl = 1, whereasys = 1 predictsd = 1 most of the time. With attribute,,
the bets given the valug # 1 are comparably bad. Although the betting situation giyers quite
satisfactory, for a given observation1 < i < n, of the dataset with the knowledgg(i) = 0 and
not knowing anything about, we cannot find the valué(i) unless we search through the whole set
of d-values. In terms of RSDA, the prediction succesgsat as bad as that @f;, and, consequently,

(g — d) = (g3 — d) = 0. O
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As the examples show, the statistical entropy measures do not take into account the special layout of
the (rough) prediction problem, because lbe— model optimizes guessing outcome of a dependent
variable but not necessarily perfect prediction.

In the next sections we will present other entropy measures, which are integrated into the rough set
approach and which are more suitable for rough set prediction.

The earliest paper to concern itself with the connection between entropy and rough set analysis was
Wong et al. (1986). In their Theorem 2, later restated in Teghem & Benjelloun (1992), Proposition 6,
the following strong connection between RSDA and entropy measurement is claimed (translated into
our terminology):

Claim Suppose that for each< i < t, |X; NY;| = d; forall j < s. Then

H(d|Q) = R

forall j <s. O

Consider the following counterexample:

Suppose tha’ = {0, 1, ..., 7}, and that the partition given byhas the sets
Yi={2-i,2-i+1}, i < 4,
and the partition given bg) is

Xo = {1,3,5,7}, X1 = {0,2,4,6}.

— Yy, |
Now, YjQ =U andeQ = @ forall j < 4, and thus,— n—]Q = 1. Furthermore|X; N Y;| = 1 for
alli < 2, j < 4, so that the hypothesis of the claim is satisfied. We now have
R 1 1
T, = 57 Nij = Zv

and it follows that
1 1 1
A - 1 — ) == logy(4) = =
Mi,j - 1082 (Wj) 4 0g(4) 57
R 1
> i logy (— ) =2
j<4 "i.j
Thus,
Hd|Q) =) #i-2=2,
<2
which contradicts the claim.
We can generalize this example to show that under the assumptions of Wong et al. (1986), the value

of H'°°(d|Q) does not depend so much gras it does on the number of classe®gfvhich are not
Q — definable:
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Proposition 3.2. Suppose that no class 6, is deterministic, and that the elements of eachare
uniformly distributed among the classEs i.e. for eachi < ¢, j < s we havgd X; NY;| = d;. Then,
H'"(d|Q) = logy(s + 1).

Proof. By the hypothesis we have foralK ¢, j < s
‘Xi N YJ‘ = d;,

and therefore it follows from} -, n; ; = 1 that

oo di_ 1
g = T s+ 1
Thus,
. . 1
HYS(d|Q) =Y 7+ Y ;- logy ( )
P ; i,5
=S A S logyls 1)
, — 5 +1
{ J
= ;- logy(s + 1)
i
= logy(s + 1),
which proves our claim. O

3.2 Prediction II: Playing it safe

Whereas the entropy measures in the previous section are good candidates to be measures of optimal
guessing strategies, based on the estimated parameters of the distributions of the cross-classification
d x @, a rough set approach should not be based on “guessing” but on “knowing”. This means that
the observations which can be predicted perfectly are assumed to be the realization of a systematic
process, whereas the nature of the indeterministic rules is assumed to be unknown to the researcher.

Based on these arguments, given a clesef 6,;, any observatiory in the region of uncertainty

Ve \ Y, is the result of a random process whose characteristics are unknown; in other words, our
given data is the partition obtained fraih and we know the world only up to the equivalence classes

of fg. Given this assumption, no information within our data set will help us to classify an element
y € U\ V, and we conclude that each sughequires a rule (or class) of its own. In this case,
any element ot/ \ V may be viewed as a realization of an unknown probability distribution with its
uncertainty% log,(n). Note that, unlike the previous one, this approach assumes that only the classes
of g are observed within a representative sample, or — in terms of parameters — the approach requires
only the probability distributiomy,, (and its estimatesy,, ) of the classes . Thus, we regard)

(and its associated equivalence relatlpy) as the given data, and, in accord with the principles of
RSDA, we only know the upper, respectively the lowkfr approximation of any class of 4,.
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It follows that we may only apply the deterministic part@f — d, and ignore whatever might be
gained from the indeterministic rules. Thus, we use only those clasgeswliich are contained in
V', and assume that eaghe U \ V is in its own class. In other words, we assume rieximum
entropy principleas a worst case, and look at the equivalence rel#fitfrdefined by

T =pdet Y & = y or there exists some< ¢ such thatr, y € X;.
Its associated probability distributionis given by; : i < ¢+ |U \ V|} with

~det ) iy, ifi<c,
(3.8) P = )

—, otherwise

We now define thentropy of deterministic rough predicticﬁwith respect ta) — d) as

HYNQ — d) < H (g% = sz logy(— w

and have
H®NQ —d) =) ;- log2 )+ U\V]-~ 1og2< )
i<c
= Zm log2 + (1 —7)-logy(n).
isc Guggsing
Knowledge
This gives us
def
H®Y(d|Q) = H*(Q — d) — H(Q)
= (1—7) - logy(n) = Y #i- logz

i>c

Sinceeg C 6 N b4, we note thady N O, has no more classes thé;g, and therefore

H'OC (Q—d) = Zm log2 Z ZV” log2

i<c i=c+1 j<s

<> A logz +(1—7) - logy(n),
i<c

— Hdet(Q N d),

which impliesH'"°¢(d|Q) < H*(d|Q).

If we compare thel%t(Q — d) and H'"°¢(Q) — d) in terms of necessary parameters, we have to
assume for the computation &f°¢(Q — d) that the deterministic rules as well as the indeterministic
rules are representative within the sample of the underlying population. Indedd'°thmeasures do
not distinguish — up to quantitative values — between deterministic and indeterministic rules.
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In contrast,Ht(Q — d) requires a representativeness only for the deterministic rules, and assumes
that any indeterministic rule, which is valid fer objects, consists afi unique (individual) rules,
gathered from a random world which cannot be replicated.

The proof of the following is straightforward, and is left to the reader:
Proposition 3.3. Letd, Q C . Then,
1. H9YQ — d) > H(d),
2. H¥Y(Q — d) = H(Q) ifand only ifdg C 0,.
3. H%(Q — d) = log,(n) if and only ifV = () or V is a union of singletons f;. O
The extremes foH %t (Q — d) are
e 0q is the identity relation, and everything can be explained)y
e 7(Q — d) =0, and everything is guessing.
In both cases we ha#¢t(Q — d) = logy(n).

The following gives the bounds within whici¢¢t(d|Q) varies:
Proposition 3.4. (1 — ) < H%*(d|Q) < (1 — ) logy(n — |V]).

Proof. First, observe that by (2.4) on pagel@,(n — |V]) > logy(2) = 1.

The minimum value ob . . 7; - logy(7;) is obtained wher = ¢ — 1, and in this case,

Zﬁz‘ -logy () =

i>c

Therefore,

HYH(d|Q) = (1 =) -logy(n) = D i - logy(—)

< (1 =) -logy(n) — (1 —7) - logy(

= (1 =) - (logy(n) — logy(

= (1 —7)-logy(n- (1 —7))
= (1 —7) - logy(n — [V]).

For the other direction, we first note that each nondeterministic dasas at least two elements, and
that",. . #; - logy(+) has a maximum if either each such class has exactly two elements, or all but
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one class have two elements and one class has three elements. Since the yaluerf logQ(ﬁ%)
is greater in the first case, we assume w.l.0.g. that|V| is even, so that

. 1 n—|V] 2 n
E i 10%2(;) = e 10%2(5)
K]

- 2
1>C

::(1-—'7)-10g2(g§-

Therefore,
HP*!(d]Q) 2 (1 - ) - loga(n) — (1 —7) - logy()
= (1=7) - (1oga(n) — logs(3))
= (1—7) - logy(2)
=1-7,
which proves our claim. O

We see that79t(d|Q) is independent of the granularity — i.e. the probability distribution — of the
deterministic classes @k, and that it is dependent on the granularity of the classes leading to non-
deterministic rules: The higher the granularity of those classes, the E#%&(d|Q). We use this to
show

Proposition 3.5. If Q C R, thenHY!(d|R) < H*(d|Q).

Proof. By the remark above, we can assume that every deterministic cldgs®t class of/z. This
implies tha’r@gzL C 67, and hence,

Hdet(R N d) < Hdet(Q N d)
Since furthermord? (Q)) < H(R) by Corollary 2.2, the conclusion follows. O

A similar result does not hold falf4¢t(Q — d) as the example given in Table 5 shows: There,

H*({q1} — {p}) = 1.5 <2 = H*({q1, a2} — {p}) = H**({@2} — {p})-

Table 5: H(Q — d)

Ul a p
1/1 1 1
212 1 2
313 2 2
414 2 2
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As in (3.2), we define the normalized relative deterministic prediction su¥88) — d), which
we also will callnormalized rough entropfNRE): First, letd; = w, so thatH (d) = log,(n). Then

1, ifbp=w,
(3.9) St (Q — ) 4 e=®
0, otherwise

Otherwise, ifH (d) < logy(n), we set

HYY(Q — d) — H(d)
logy(n) — H(d) ~
In this way we obtain an measure of prediction success within RSDA, which can be used to compare
different rules in terms of the combination of coding complexity and the prediction uncertainty in the
sense that a perfect prediction result$#i*(Q — d) = 1, and the worst case is 86°*(Q — d) = 0.
Sdet is an unconditional measure, because both, the complexity of the rules and the uncertainty of the
predictions, are merged into one measure.

def

(3.10) S5et(Q —d) =1

The question arises, where the approximation functiempositioned in this model. Proposition 3.4
shows that, for fixed),

max{H®(d|R) : v(R — d) = 7(Q — d)} = (1 =) - logy(n — |V,

and we denote this value B¥2et (d|Q). The following result tells us that, for fixed H<t (d|Q) is
strictly inversely monotone tg(Q — d):

Proposition 3.6. v(Q — d) < y(R — d) <= HZ% (d|R) < H (d|Q).

max max
Proof. “=": The hypothesis/(Q — d) < v(R — d) implies that|Vy_.4| < |Vgr—a|. Thus,
Hyb (dIR) = (1= 7(R — d)) - loga(n — [Vr—dl),
< (1 =7(Q — d)) - logy(n — [Vo—dl),

= Hr(jgtx(d‘Q)a
“«": First note, that fork > 1,
(3.11) k-loggk < (k+1)-logy(k +1).

We can also assume thak HS (d|R), so thatl/ \ Vz_.4 # 0. Now,

max

He% (d|R) < Hyeh (d]Q)

= (1 —v(R — d)) - logy(n — [Vr—al) < (1 —4(Q — d)) - logy(n — [Vo—adl)
= (n = [Vi—dl) - logy(n — [Vr—dl) < (n — [V—dl) - loga(n — [Vig—dl)

= (n— [Ve—al) < (n—[V—dl) by (3.11)

= |Vo—d| < |Vr—d

=7(Q —d) <y(R—d).

This completes the proof. O
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We observe that

e RSDA which tries to maximize is a procedure to minimize the maximum of the conditional
entropy of deterministic rough prediction.

In terms of conditional uncertainty, we may view= ~(Q — d) as a crude approximation of a
measure of normalized prediction success, because

Sdet (d‘Q) -1 Hggtx(d‘Q) B min{Hggtx(d‘R) 'R g Q}
max  max{HZt (d|R): RC Q} —min{Hdt (d|R): R C Q}

max max

_ HES(dQ) -0

=17 Tlogy(m) -0

=r- -
1

‘”+O<m@m0'

Proposition 3.5 does not extend to the hypothes{g — d) < v(R — d), and thus, a result similar
to 3.6 does not hold, as the following example shows: Consider the equivalence refatiénsr
with the following partitions:

04:{1,2,3},{4,5,6}, 0 : {1,4},{2,5},{3,6}, Or : {1},{2,3,4,5,6}.

Then,
1
Q= d)=0< 2 =7(R—d).
On the other hand,
det 5 5 5 6 det
H(d|Q) = logy(6) — logy(3) =1 < 6 logy(5) = 6 -logy(6) — 6 '10g2(3) = H(d|R).

Example 1. cont

Table 6 presents the rough information analysis for the data of the example given in Table 2. We have
skipped the presentation of ti&?*t(d|Q)-measures, because — as shown above — they are identical
with ~ for the purpose of comparing the prediction success of different attribute sets. The results show

Table 6: Rough information measures of the predicting quality within the example information system

Attribute Set| H®Y(Q — d) S%Y(Q — d) | S'°(Q —d) | ~  Significance
{S} 1.880 0.573 0.808 0.556 0.047
{BMI} 3.170 0.000 0.568 0.000 1.000
(S, BMI} 2.197 0.432 0432 | 0778  0.144

that the NRESYt(QQ — d) is a good candidate to evaluate the rough prediction quality of attribute
set, because it produces the same order of “goodness in pralitigtals the significance test, without
the limitations of the significance test. Inspecting the resultsii/1} in Table 6, one can see that
the “defects” 0fS'°(Q — d) have been repaired. 0
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3.3 Prediction llI: Living side by side

In Section 3.2 the predictiof*t(Q) — d) consists of two parts: The absolute correct deterministic
part (the union of the lower bound approximations) and the random part. The prediction within the
random part is done using an “element — to — class” mapping, because of the assumption that no
uncertain observation can be predicted given any available source of data. If we are willing to use
the information provided by the indeterministic rules which are offered by RSDA, the uncertainty is
restricted by those rules and we need another entropy estimation.

This approach to handle uncertainty recognizes @haduces some structure @n\ V: If X, is a

class offg which does not lead to a deterministic rule, there are clagggs. . , Y, of g, k > 1,

such that(X;,Y; ;) € Q@ — d, i.e. X; intersects eacly; ; \ V. Uncertainty givenX; can now be
measured by the uncertainty with{iY; o \ V,...,Y; \ V} which also requires knowledge of the
probability distribution induced by,;. The assumption can be interpreted in the sense that an inde-
terministic rule produces a certain degree of imprecision in the predictigp bt that theamount

of uncertainty is based solely on the uncertainty withisand does not interact witf). Even though

this is not “pure rough set theory”, it is certainly consistent with it: The procedure describes the up-
per bounds of sets defined By in terms of a suitable probability distribution. As we shall not be
using the method in the sequel, we will spare the reader the somewhat involved definitions of the
resulting entropy measurég* (Q — d) andH*(d|Q). We shall just mention, that, unliké“*(d|Q)

and H'°¢(d|Q), the conditional entropy?*(d|Q) is not (anti-) monotone. This result is a drawback,
because the monotone relationshiplofind a measure of approximation quality seems to be quite
natural. As a consequence, within a search process we cannft(ggR) as stop criterion like the

other conditional measures H%(d|R), or H'°*(d|R). Therefore it seems that the practical value

of the H*—measure is rather limited, although it takes a representativeness assumption which is in be-
tween deterministic rough entropyet and the statistical entrogy'°: The H* — approach assumes

that the probability distributions within the upper bound of any clagy @fre representative, whereas
H'°c assumes that any conditional probability distribution is representative/&fichssumes that the
probability distribution within the lower bound of any classigfis representative for the population.

We shall investigate this method in more detail in subsequent research.

4 Data analysis and validation

The approach which is closest to the non—invasive philosophy of RSDA is the entropy of deterministic
rough prediction//%t(Q) — d) which combines the principle of indifference with the maximum
entropy principle in an RSDA context. We advocate this type of entropy because of our basic aim to
use as few assumptions outside the data as possible:

“Although there may be many measureghat are consistent with what we know, the
principle of maximum entropsuggests that we adopt that which has the largest en-
tropy among all the possibilities. Using the appropriate definitions, it can be shown that
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there is a sense in which thig incorporates the ‘least’ additional information” (Jaynes,
1957).

To obtain an objective measurement we use the normalized rough entropy (NRE) of (3.10) on page
23, where

HYN(Q — d) — H(d)

det N — 1 _
(4.1) STQ = d) =1 = = (O~ 7@

If the NRE has a value near 1, the entropy is low, and the chosen attribute combination is favorable,
whereas a value near 0 indicates casualness. The normalization does not use moving standards as
long as we do not change the decision attriklit€herefore, any comparison of NRE values between
different predicting attribute sets makes sense, given a fixed decision attribute.

The implemented procedure searches for attribute sets with a high NRE; since finding the NRE of
each feature set is computationally expensive, we use a genetic — like algorithm to determine sets with
a high NRE.

We have named the method SORES, an acronymdarching ®@timal Rough Ehtropy Sts. SORES
is implemented in our rough set engin@GBIAN (Diintsch & Gediga, 19978)

4.1 Validation

In order to test the procedure, we have used 14 datasets available from the UCI repoBibony
which the appropriate references of origin can be obtained. These are a subset of the datasets which
were used by Quinlan (1996) to test Release 8 of C4.5.

The validation by the training set — testing set method was performed by splitting the full data set
randomly into two equal sizes 100 times, assuming a balanced distribution of training and testing data
(TT2 method). The mean error value is our measure of prediction success.

We choose only half of the set for training purposes in order to have a basis for testing the predictive
power of the resulting attribute setse@use all data sets contained continuous attributes and most

of them missing values as well, a preprocessing step was necessary to apply the SORES algorithm to
these data sets. Missing values were replaced by the mean value in case of ordinal attributes, and by
the most frequent value (i.e. the mode) otherwise. The preprocessing of the continuous data was done
by three different global discretization methods:

Method 1 consists of the global filtering method described in Section 2.3 which influences the NRE,
but does not affect, and thus has no influence on the dependency structure. This results in minimal
granularity of attributes with respect to the decision attribute. The other two discretization methods
cluster the values of an attribute into ten, resp. five, classes with approximately the same number of
objects. The discretization method can be refined by transforming/ ttfe-based methods of local

All material relating to SORES, e.g. datasets, a description of the algorithm, as weit@si @\, can be obtained
from our websiténttp://www.psycho.uni-osnabrueck.de/sores/
2http:/iwww.ics.uci.edu/~mlearn/MLRepository.html
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Table 7: Datasets and SORES validation

Dataset SORES C4.5(8)
Attributes No. of

Name Cases| Classes Cont.| Discr, || pred. atr Error | Error

Anneal 798 6 9 29 11 6.26 | 7.67
Auto 205 6 15 10 2 11.28| 17.70

Breast-W 683 2 9 - 2 5.74 5.26
Colic 368 2 10 12 4 21.55| 15.00
Credit-A 690 2 6 9 5 18.10| 14.70
Credit-G 1000 2 7 13 6 32.92| 28.40
Diabetes 768 2 8 - 3 31.86| 25.40
Glass 214 6 9 - 3 21.79| 32.50
Heart—C 303 2 8 15 2 22.51| 23.00
Heart—H 294 2 8 15 5 19.43| 21.50
Hepatitis 155 2 6 13 3 17.21| 20.40

Iris 150 3 4 - 3 433 | 4.80
Sonar 208 2 60 - 3 25.94| 25.60
Vehicle 846 4 18 - 2 35.84| 27.10

Std. Deviation 10.33| 8.77

discretization of continuous attributes given in Catlett (1991) and Dougherty, Kohavi & Sahami (1995)
to the proposed/9et — measure. This is a task which still needs to be done, but which is outside the
scope of the current introductory article.

In Table 7 we list the basic parameters of the data sets, and compare the SORES results with the
C4.5 performance given in Quinlan (1996). This has to be taken with some care, since Quinlan uses
10-fold cross validation (CV10) on data sets optimized by

“ ... dividing the data into ten blocks of cases that have similar size and class distribu-
tion” (Quinlan, 1996, p.81, footnote 3.).

Because TT2 tends to result in smaller prediction success rates than CV10, the comparison of SORES
and C4.5 is based on a conservative estimate.

The SORES column “No. of pred. attr.” records the number of attributes which are actually used for
prediction; this is a prominent feature of RSDA, and in most cases considerably less than the number
of all attributes.

The results indicate that SORES in its present version can be viewed as an effective machine learning
procedure, because its performance compares well with that of the well established C4.5 method: The
odds are 7:7 (given the 14 problems) that C4.5 produces better results. However, since the standard
deviation of the error percentages of SORES is higher than that of C4.5, we conclude that C4.5 has a
slightly better performance than the current SORES.
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5 Summary and outlook

In the first part of the paper we have proposed three approaches to estimate the unconditional predic-
tion success within the context of RSDA using various entropy measures.

The statistical entropy measure is not well suited, because the assumption of a symmetric information
exchange of predicting and predicted attributes is not given within the RSDA frame. Two modifi-
cations are discussed: The first o, relies only on the information given by the deterministic
rules, and assumes an atom-like structure of all other information. The other appiidaeldition-

ally uses the knowledge about the distributions within the indeterministic rules, but has the drawback
of lacking monotony within the conditional measut& (d|Q). The measurédt(Q — d) seems

to be the most suitable measure to compare attribute(kets . , Q. in terms of combined coding
complexity and expected prediction uncertainty.

In the second part of the paper, we have applied the method of searching optimal rough entropy sets
(SORES) to real life data sets. The method seems to be well applicable, since we show that C4.5
performs better than SORES on only 7 of 14 problems, although C4.5 is used in a fine tuned version
(Release 8) and SORES, at present, is still quite “raw”.

Fine tuning of the SORES procedure will consist of — at least — the following steps.

e Both types of measures HM(Q — d) and H(d|Q) (whatever modelM is used) — are to
some extent suitable measures for finding optimal sets for prediction, and thus, any weighted
sum

HY(Q,d,w)=w-HM(Q — d) + (1 —w) - HM(d|Q),

(0 < w < 1)isasuitable measure as welluf= 1, we weight the effort of searching for arule

as high as the effort of reducing uncertainty of the dependent attribute=I is chosen, then

the effort of coding the rules is neglected. Finally, @y w < 1 estimates the relative effort

of finding a rule with respect to finding an object under uncertainty. The methods in Section
3 are based on an = 1 procedure, but it will be worthwhile to compare these results with
procedures using < 1.

e The proposed method — as a symbolic data analysis procedure — is rather time consuming. In
order to enhance the applicability of the procedure to real life data sets, the optimization cannot
be performed on big samples, but some kind of subsample optimization must be implemented.
The theory of dynamic reducts (Bazan, Skowron & Synak, 1994, Bazan, 1997) is a step towards
such an enhancement.

e The discretization of continuous attributes is another problem which has to be solved by any
symbolic data analysis technique. Although the global discretization procedures described
above work quite well in the presented numerical examples, a local discretization procedure,
which optimizes the chosen criterion — efgdst(Q — d) — directly, can be expected to pro-
duce an even better prediction quality.
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Finally, we should like to point out that, except for the two numerical global discretization methods,

all of the procedures developed in Section 3 do not use any external parameters, and only the repre-

sentation assumptions stated for each of the three approaches. Thus, model assumptions are kept to
a minimum, and the procedures can (at least) serve as a preprocessing mechanism before “harder”

computational or statistical methods are applied.

References

Bazan, J., Skowron, A. & Synak, P. (1994). Dynamic reducts as a tool for extracting laws from
decision tables. IfProc. of the Symp. on Methodologies for Intelligent Systems, Charlotte, NC
Lecture Notes in Artificial Intelligence, 346—355, Berlin. Springer—Verlag.

Bazan, J. G. (1997). A comparison of dynamic and non—dynamic rough set methods for extracting
laws from decision tables. Preprint, Institute of Mathematics, University of Rzeszow.

Browne, C. (1997). Enhanced rough set data analysis of the Pima Indian diabetes dratzc. B
Ireland Conference on Atrtificial Intelligence, Derry (1993p—39.

Browne, C., Dintsch, I. & Gediga, G. (1998). IRIS revisited: A comparison of discriminant and
enhanced rough set data analysis. In Polkowski & Skowron (1998). To appear.

Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. In Y. Kodratoff
(Ed.),Proceedings European Working Session on Learning — EWS162:-178, Berlin. Springer
Verlag.

Cohen, J. (1990). Things | have learned (so fAmerican Psychologist5, 1304-1312.

Dougherty, J., Kohavi, R. & Sahami, M. (1995). Supervised and unsupervised discretization of con-
tinuous features. IRroceedings Twéh International Conference on Machine Learnjri®4—-202,
San Francisco. Morgan Kaufmann.

Duntsch, I. (1997). A logic for rough set$heoretical Computer Scienckr9, 427-436.
Duntsch, I. & Gediga, G. (1997a). The rough set engine GROBIAN. In Sydow (1997), 613—-618.

Duntsch, I. & Gediga, G. (1997b).dUGHIAN — Rough Information Analysis (Extended abstract). In
Sydow (1997), 631-636. The full paper is available frotp://www.infj.ulst.ac.uk/
~cccz23/papers/roughian.html

Duntsch, I. & Gediga, G. (1997c). Statistical evaluation of rough set dependency anatysiaa-
tional Journal of Human—Computer Studjd$, 589-604.

Duntsch, I. & Gediga, G. (1998). Simple data filtering in rough set systarmernational Journal of
Approximate Reasonin@8, 93—-106.

Jaynes, E. T. (1957). Information theory and statistical mechaRirgsical Reviewl 06, 620—630.

29



Jumarie, G. (1990). Relative Information. Berlin, Heidelberg,New York: Springer—Verlag.

Konrad, E., Ortowska, E. & Pawlak, Z. (1981a). Knowledge representation systems — Definability of
informations. ICS Research Report 433, Polish Academy of Sciences.

Konrad, E., Orlowska, E. & Pawlak, Z. (1981b). On approximate concept learning. Tech. Rep. 81-7,
Technische Unversitat Berlin.

Li, M. & Vitanyi, P. (1993). An Introduction to Kolmogorov Complexity and Its Applications. Texts
and Monographs in Computer Science. Berlin, Heidelberg, New York: Springer—\Verlag.

Nguyen, H. S. & Nguyen, S. H. (1998). Discretization methods in data mining. In Polkowski &
Skowron (1998). To appear.

Pagliani, P. (1997). Rough sets theory and logic-algebraic structures. In E. Orlowska{(&aplete
Information — Rough Set Analysi09-190. Heidelberg: Physica — Verlag.

Pawlak, Z. (1973). Mathematical foundations of information retrieval. ICS Research Report 101,
Polish Academy of Sciences.

Pawlak, Z. (1982). Rough setmternat. J. Comput. Inform. S¢il1, 341-356.

Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data, vBiyQerh Theory,
Knowledge Engineering and Problem Solvim@prdrecht: Kluwer.

Pawlak, Z., Grzymata-Busse, J. W., Stoski, R. & Ziarko, W. (1995). Rough set€omm. ACM
38, 89-95.

Pawlak, Z. & Stowiiski, R. (1993). Rough set approach to multi—attribute decision analysis. ICS
Research Report 36, Warsaw University of Technology.

Polkowski, L. & Skowron, A. (Eds.) (1998). Rough sets in knowledge discovery. Heidelberg:
Physica—Verlag. To appear.

Quinlan, R. (1996). Improved use of continuous attributes in Cdobirnal of Artificial Intelligence
Research4, 77-90.

Rissanen, J. (1978). Modeling by the shortest data descriptisiomatical4, 465-471.

Rissanen, J. (1985). Minimum — description — length principle. In S. Kotz & N. L. Johnson (Eds.),
Encyclopedia of Statistical Scienc&23-527, New York. Wiley.

Sydow, A. (Ed.) (1997). Proc. 15th IMACS World Congress, vol. 4, Berlin. Wissenschaft und Technik
Verlag.

Teghem, J. & Benjelloun, M. (1992). Some experiments to compare rough sets theory and ordinal
statistical methods. In R. Stongki (Ed.),Intelligent decision support: Handbook of applications
and advances of rough set thepwl. 11 of System Theory, Knowledge Engineering and Problem
Solving 267-284. Dordrecht: Kluwer.

30



Wong, S. K. M., Ziarko, W. & Ye, R. L. (1986). Comparison of rough—set and statistical methods in
inductive learningInternat. J. Man—Mach. Stud24, 53-72.

31



