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Abstract

The main statistics used in rough set data analysis, the approximation quality, is of limited
value when there is a choice of competing models for predicting a decision variable. In keeping
within the rough set philosophy of non–invasive data analysis, we present three model selection

criteria, using information theoretic entropy in the spirit of the minimum description length prin-
ciple. Our main procedure is based on the principle of indifference combined with the maximum
entropy principle, thus keeping external model assumptions to a minimum. The applicability of

the proposed method is demonstrated by a comparison of its error rates with results of C4.5, using
14 published data sets.
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1 Introduction

Most of the commonly used procedures for data prediction require parameters outside the observed

phenomena, or presuppose that the properties are of a quantitative character and are subject to random

influences, in order that statistical methods such as variance analysis, regression, or correlation may

be applied.

One method which avoids external parameters isrough set data analysis(RSDA); it has been devel-

oped by Z. Pawlak and his co–workers since the early 1970s (Pawlak, 1973, Konrad, Orłowska &

Pawlak, 1981a,b, Pawlak, 1982), and has recently received wider attention as a means of data analysis

(Pawlak, Grzymała-Busse, Słowi´nski & Ziarko, 1995). The rationale of the rough set model is the

observation that
∗Equal authorship implied



“The information about a decision is usually vague because of uncertainty and impreci-

sion coming from many sources. . . Vagueness may be caused bygranularityof repre-

sentation of the information. Granularity may introduce an ambiguity to explanation or

prescription based on vague information” (Pawlak & Słowi´nski, 1993).

In other words, the original concept behind the model is the realization that sets can only be described

“roughly”: An object has a property

• CERTAINLY, • POSSIBLY, • CERTAINLY NOT.

This looks conspicuously like a fuzzy membership function, and indeed, on the algebraic – logical

level, we can say that the algebraic semantic of a rough set logic corresponds to a fuzzy logic with a

three - valued membership function (see Düntsch, 1997, Pagliani, 1997).

Rough set analysis uses only internal knowledge, and does not rely on prior model assumptions as

fuzzy set methods or probabilistic models do. In other words, instead of using external numbers or

other additional parameters, rough set analysis utilizes solely the granularity structure of the given

data, expressed as classes of suitable equivalence relations. Of course, this does not mean that RSDA

does not have any model assumptions; for example, we indicate below that the statistical model behind

RSDA is theprinciple of indifference. However, model assumptions are such that we admit complete

ignorance of what happens within the region of indiscernibility,given by the granularity of information

(see Section 2.1).

The results of RSDA must be seen with this background in mind: The rough set model tries to extract

as much information as possible from the structural aspects of the data, neglecting, in its pure form,

numerical and other contextual information of the attribute domains. This keeps model assumptions to

a minimum, and can serve as a valuable indicator of the direction into which possible further analysis

can go.

The relationship between RSDA and statistical modeling is quite complementary (see Table 1), and

we have discussed it in more detail in Düntsch & Gediga (1997b).

Table 1: RSDA vs statistical modeling

RSDA Statistical models

Many features/attributes, few data pointsFew variables, many data points

Describing redundancy Reducing uncertainty

Top down, reducing the full attribute set Bottom up, introducing new variables

Knowledge representation in the rough set model is done viainformation systemswhich are a tabular

form of an OBJECT → ATTRIBUTE VALUE relationship, similar to relational databases (see Section

2.2).
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If Q is a set of predictor features andd a decision attribute, then RSDA generates rules of the form∧
q∈Q

xq = mq ⇒ xd = m0
d ∨ xd = m1

d ∨ . . .∨ xd = mk
d,(1.1)

wherexr is the attribute value of objectx with respect to attributer.

We see that in the rough set model rules can be indeterministic in the sense that on the right hand side

of (1.1) we can have a proper disjunction. If there is only on term on the right hand side, we call the

ruledeterministic. Whereas RSDA handles deterministic rules in a straightforward manner, the status

of the indeterministic rules remains unclear.

If rules are based on a few observations only, the granularity of the system is too high, and the rule

may be due to chance. In order to test the significance of rules, one can use randomization methods to

compute the conditional probability of the rule, assuming that the null hypothesis

“Objects are randomly assigned to decision classes”

is true. In Düntsch & Gediga (1997c) we have developed two simple procedures, both based on ran-

domization techniques, which evaluate the validity of prediction based on the principle of indifference,

which is the underlying statistics of RSDA; this technique is briefly described in Section 2.4.

Although randomization methods are quite useful, they are rather expensive in resources, and are only

applicable as a conditional testing scheme:

• Though they tell us when a rule may be due to chance, they do not provide us with a metric

for the comparison of two different rulesQ → d, R → d, let alone for different models of

uncertainty.

Thus, we need a different criterion for model selection: Theminimum description length principle

(MDLP) (see Rissanen, 1978, 1985) states that the best theory to explain a given phenomenond is

one which minimizes the sum of

• The binary length of encoding a hypothesisQ and

• The binary length of encoding the decision datad using the hypothesisQ as a predictor.

In the sequel, we present three different ways of model selection within RSDA, based on three differ-

ent probability distributions in the spirit of the MDLP. Withineach model frameM , the attractiveness

of this approach is that information about the uncertainty of rules such as (1.1) is considered in a

context where the selection criterionHM(Q→ d) is the aggregate of the

• Effort of coding a hypothesisQ, expressed by an entropy functionH(Q), and

• Uncertainty of “guessing” in terms of the optimal number of decisions to classify a randomly

chosen observation given this hypothesis, expressed as a suitable entropyHM(d|Q).

The paper is organized as follows: In Section 2 we describe the basic tools of RSDA and their main

properties, as well as our usage of the entropy functions. Section 3 contains our three approaches to

uncertainty, and Section 4 applies our main approach to some well known data sets. Finally, Section

5 consists of a summary and an outlook.
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2 Basic tools and constructions

2.1 Approximation spaces

An equivalenceθ on a setU is a transitive, reflexive, and symmetric binary relation, and we call the

pair〈U, θ〉 anapproximation space. In our context, we shall sometimes call an equivalence relation an

indiscernibility relation. Approximation spaces are the core mathematical concept of RSDA, and their

usage reflects the idea that granulation of information can be described by classes of an indiscernibility

relation.

Recall that a partitionP of a setU is a family of nonempty, pairwise disjoint subsets ofU whose union

is U . With each equivalence relationθ we associate a partitionPθ of U by specifying thata, b ∈ U

are in the same class ofPθ, if and only ifaθb. The classes ofPθ have the form

θa = {b ∈ U : aθb}.

By some abuse of language, we also speak of the classes of an equivalence relation when we mean

the classes of its associated partition, and callθa the class ofa moduloθ.

The interpretation in rough set theory is that our knowledge of the objects inU extends only up to

membership in the classes ofθ, and our knowledge about a subsetX of U is limited to the classes of

θ and their unions. This leads to the following definition:

ForX ⊆ U , we say that

X
def=

⋃
{θx : θx ⊆ X}

is thelower approximationor positive region of X, and

X
def=

⋃
{θx : x ∈ X}

is theupper approximationor possible regionof X .

If X ⊆ U is given by a predicateP andx ∈ U , then

1. x ∈ X means thatx certainlyhas propertyP ,

2. x ∈ X means thatx possiblyhas propertyP ,

3. x ∈ U \X means thatx definitelydoes not havepropertyP .

Thearea of uncertaintyextends over

X \X,
and thearea of certaintyis

X ∪ −X.
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Figure 1: Rough approximation

2.2 Information systems

Knowledge representation in RSDA is done via relational tables. Aninformation system

I = 〈U,Ω, Vq, fq〉q∈Ω

consists of

1. A finite setU of objects,

2. A finite setΩ of attributes,

3. For eachq ∈ Ω

• A setVq of attribute values,

• An information functionfq : U → Vq.

In the sequel we shall useI as above as a generic information system with|U | = n andP,Q, R ⊆ Ω.

We also will sometimes writexq instead offq(x) to denote the value ofx with respect to attributeq.

Furthermore, we suppose thatd ∈ Ω is a decision attribute which we want to predict with attribute

setsQ,R ⊆ Ω.

Example 1. We use the small information system given in Table 2 on the next page as a running

example to illustrate the various concepts developed in the sequel. An attribute “Heart Disease” (HD)

shall be predicted from two variables “Smoker” (S) and “Body Mass Index” (BMI). 2

With eachQ we associate an equivalence relationθQ onU by defining

x ≡θQ
y

def⇐⇒ (∀q ∈ Q)fq(x) = fq(y),
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Table 2: An example of an information system

No S BMI HD

1 no normal no

2 no obese no

3 no normal no

4 no obese no

5 yes normal yes

6 yes normal yes

7 yes obese no

8 yes obese yes

9 no normal no

and the partition induced byθQ is denoted byP(θQ) or simply byP(Q).

The interpretation ofθQ is the following: If our view of the worldU is limited to the attributes given

byQ, then we will not be able to distinguish objects within the equivalence classes ofθQ.

Example 1. cont.

The classes ofθQ andθd are as follows:

Q Classes ofθ

{S} {1, 2, 3, 4, 9}, {5, 6, 7, 8}
{BMI} {1, 3, 5, 6, 9}, {2, 4, 7, 8}
{S, BMI} {1, 3, 9}, {2, 4}, {5, 6}, {7, 8}

d

{HD} {1, 2, 3, 4, 7, 9}, {5, 6, 8}.
2

We can now use the definition of upper, resp. lower approximation of sets viaθQ defined in the

previous section. It is not hard to see that forY ⊆ U ,

Y
Q = {x ∈ U : θQx ∩ Y 6= ∅}(2.1)

is the upper approximation ofY with respect toQ, and

Y Q = {x ∈ U : θQx ⊆ Y }(2.2)

is the lower approximation ofY with respect toQ. If Q is understood, we just writeY or Y .

The equivalence relationsθQ are used to obtain rules in the following way:

6



LetQ→ d ⊆ P(Q)× P(d) be the relation

〈X, Y 〉 ∈ Q→ d
def⇐⇒ X ⊆ Y

Q
.

Observe that by (2.1),

X ⊆ Y
Q

if and only ifX ∩ Y Q 6= ∅ if and only ifX ∩ Y 6= ∅,

and thus,

〈X, Y 〉 ∈ Q→ d⇐⇒ X ∩ Y 6= ∅.(2.3)

Observe that we can determine with the knowledge gained fromQ whetherX ∩ Y = ∅ and also – by

(2.2) – whetherX ⊆ Y

A pair 〈X, Y 〉 ∈ Q → d is called aQ,d – rule(or just a rule, ifQ andd are understood), usually

written it asX → Y . By some abuse of language we shall also callQ → d a rule when there is no

danger of confusion, and normally identify singleton sets with the element they contain.

If 〈X, Y 〉 ∈ Q → d, thenX corresponds to the left hand side of the implication (1.1), andY

corresponds to (one of) the disjuncts of the right hand side.

Example 1. cont.

The ruleS → HD consists of the pairs

〈{1, 2, 3, 4, 9},{1, 2, 3, 4, 7, 9}〉
〈{5, 6, 7, 8},{1, 2, 3, 4, 7, 9}〉
〈{5, 6, 7, 8},{5, 6, 8}〉,

BMI → HD has the pairs

〈{1, 3, 5, 6, 9},{1, 2, 3, 4, 7, 9}〉
〈{1, 3, 5, 6, 9},{5, 6, 8}〉
〈{2, 4, 7, 8},{1, 2, 3, 4, 7, 9}〉
〈{2, 4, 7, 8},{5, 6, 8}〉,

and for{S, BMI} → HD we obtain

〈{1, 3, 9},{1, 2, 3, 4, 7, 9}〉
〈{2, 4},{1, 2, 3, 4, 7, 9}〉
〈{5, 6},{5, 6, 8}〉
〈{7, 8},{1, 2, 3, 4, 7, 9}〉
〈{7, 8},{5, 6, 8}〉.

2
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Thedeterministic– or functional– part ofQ→ d, written asQ
det→ d, is the set

{〈X, Y 〉 ∈ Q→ d : X ⊆ Y }.

If 〈X, Y 〉 ∈ Q
det→ d, then the classX is calledd – deterministicor justdeterministic, if d is under-

stood. In this case, the values of eachx ∈ U on the attributes inQ uniquely determine the values ofx

with respect to the attribute values ofd.

Example 1. cont.

The deterministic classes of{S, BMI} → HD are{1, 3, 9}, {2, 4}, {5, 6}; the only deterministic

class of{S} → HD is {1, 2, 3, 4, 9}, and there is no deterministic class of{BMI} → HD. 2

If Q→ d = Q
det→ d, i.e. ifQ→ d is a function, then we callQ→ d deterministicand writeQ⇒ d;

in this case, we say thatd is dependent onQ. It is not hard to see that

Q⇒ d if and only if θQ ⊆ θd,

so that our terminology is in line with the usual convention in RSDA.

A special role will be played by the deterministic part ofQ→ d, and we define

VQ→d
def=

⋃
{X ∈ P(Q) : 〈X, Y 〉 ∈ Q

det→ d}

In other words,VQ→d is the union of alld – deterministicθQ classes. IfQ → d is understood, we

shall just writeV instead ofVQ→d. Note that

n− |V | = 0 or n − |V | ≥ 2,(2.4)

since every singleton class ofθQ is deterministic for anyd. A classY of θd is calledQ – definable(or

justdefinable, if Q is understood), ifY ⊆ V .

Example 1. cont.

The deterministic parts are easily seen to be

VS→HD = {1, 2, 3, 4, 9}, VBMI→HD = ∅, V{S,BMI}→HD = {1, 2, 3, 4, 5, 6, 9}.2

Even though RSDA is a symbolic method, it implicitly makes statistical assumptions which we briefly

want to describe, and we start by looking at a single equivalence relationθ onU . The inherent metric

of an approximation system〈U, θ〉 is theapproximation quality

γθ(X) def=
|Xθ|+ |−Xθ|

|U | ,(2.5)

(Pawlak, 1991, p. 16ff). Ifθ is understood, we shall usually omit the subscripts.

The valueγ(X) is the relative frequency of objects ofU which can be correctly classified with the

knowledge given byθ as being inX or not. The functionγ can be generalized for information

systems (Pawlak, 1991, p. 22); we choose a different (but equivalent) definition which is more suited
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for our purpose. As a measure of the approximation quality ofQ with respect tod, we define an

approximation functionby

γ(Q→ d) =
|⋃{X ∈ P(Q) : X is d–deterministic}|

|U | .(2.6)

Note that

γ(Q→ d) =
|V |
|U | ,

and

Q⇒ d if and only if γ(Q→ d) = 1.

Example 1. cont.

We see that

γS→HD =
5
9
, γBMI→HD =

0
9
, γ{S,BMI}→HD =

7
9
. 2

It is not hard to see that the statistical principle underlying the approximation functions is theprinciple

of indifference:

• If one does not have any information about the occurrence of basic events, they are all assumed

to be equally likely.

Q is called areduct ofd, if it is minimal with respect to the property thatγ(Q→ d) = 1. Reducts are

of particular importance in rough set theory as a means of feature reduction.

2.3 Data filtering and discretization

Even though RSDA has no inherent categorization mechanism, it is possible to handle continuous data

satisfactorily in several ways. One method which keeps close to the RSDA philosophy of keeping

outside assumptions to a minimum is the filtering procedure described in Düntsch & Gediga (1998)

which is based only on the information provided by the indiscernibility relations. This technique

collects values of a feature into a single value by taking a union of deterministic equivalence classes

which are totally contained in a class of the decision attribute; in this way, the underlying statistical

basis of the rule may be enlarged, and the significance of the rule is increased (see Section 2.4).

For example, if we have an attributeq and a rule

If q = 2 orq = 3 orq = 5 thend = blue,

then we can collect 2,3,5 into a single attribute value ofq.

The important feature of this procedure is that the internal dependency structure of the system is kept

intact, and that we do not need additional parameters. In other words, this step can be regarded as a
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part of the operationalization procedure; it can be implemented as a cheap standard algorithm if the

decision attribute is fixed, for example, in our rough set engine GROBIAN (Düntsch & Gediga, 1997a).

Even though the method is simple, it sometimes works surprisingly well as the investigations of

Browne, Düntsch & Gediga (1998) and Browne (1997) indicate. Nevertheless, this discretization

scheme cannot cope effectively with complex interactions among continuous variable as other, more

sophisticated, discretization methods do. For these methods applicable in RSDA (which, however,

use external parameters and restrictive modelling assumptions) we invite the reader to consult Bazan

(1997) or Nguyen & Nguyen (1998) and the references therein.

The claim that RSDA is not applicable to most real life problems, because it cannot handle contin-

uous variables seems to us to be an open problem, but not a fact. The success of applications of

fuzzy controlling, which also requires discretization of continuous data, shows that the distinction

of “continuous data” vs. “discrete data” does not necessarily imply that there is a need for different

“continuous methods” , respectively, “discrete methods”, to handle these different types of data. We

also refer the reader to Section 4 below, in which the prediction quality of our RSDA based methods

is explored also for data sets which consists of continuous variables.

2.4 Significance testing

Suppose that we want to test the statistical significance of the ruleQ → d. Let Σ be the set of all

permutations ofU . For eachσ ∈ Σ, we define a new set of feature vectorsxΩ
σ by

xr
σ

def=



σ(x)d, if r = d,

xr, otherwise.
(2.7)

In this way, we permute thexd values according toσ, while leaving everything else constant. The

resulting rule system is denoted byQ → σ(d). We now use the permutation distribution{γ(Q →
σ(d)) : σ ∈ Σ} to evaluate the strength of the predictionQ → d. The valuep(γ(Q → d)|H0)
measures the extremeness of the observed approximation quality and it is defined by

p(γ(Q→ d)|H0) :=
|{σ ∈ Σ : γ(Q→ σ(d)) ≥ γ(Q→ d)}|

|U |!(2.8)

If α = p(γ(Q → d)|H0) is low, traditionally below 5%, we reject the null hypothesis, and call the

rulesignificant, otherwise, we call itcasual. Failure to reject the null hypothesis does not mean that it

is true, and thus, such randomization tests are a necessary condition for significance (for a discussion,

see Cohen, 1990).

Randomization is a statistical technique which does not require a representative sampling from a

population which is a theoretical generalization of the sample under study, because the randomization

procedure uses only information within the given sample, well in accord with our stated objective.

This aspect is in contrast to most other statistical techniques. Even the bootstrap technique needs some

parametric assumptions, because one has to suppose that the percentages of the observed equivalence

classes are suitable estimators of the latent probabilities of the equivalence classes in the population.
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Example 1. cont.

Table 3 tells us the approximation qualities and the significance of the sets{S}, {BMI}, and{S, BMI}
for the prediction ofHD for the example information system of Table 2.

Table 3: Approximation quality and significance of predicting attributes

Attribute Set γ Significance Interpretation

{S} 0.556 0.047 not casual (α = 5%)

{BMI} 0.000 1.000 casual (α = 5%)

{S, BMI} 0.778 0.144 casual (α = 5%)

The best approximation quality is attained by the combination of both predicting attributesS and

BMI . However, in terms of statistical significance the set{S, BMI} is not a significant predictor

for the outcome ofHD, because there is no evidence that the prediction success is not due to chance.

Therefore, although the approximation quality of{S} is smaller than that of{S,HD}, the set{S}
should be preferred to predictHD, because it is unlikely that the prediction success is due to chance.

2

In most applications one can observe that there are several reducts or attribute sets with an acceptable

approximation quality. Significance testing gives some information about their statistical validity, but

there are often several sets with comparable good statistical quality. Thus, we need an additional

criterion for model selection, the foundations of which will be laid in the next section.

2.5 Partitions and Information Measures

Let P be a partition ofU with classesXi, i ≤ k, each having cardinality ri. In compliance with

the statistical assumption of the rough set model we assume that the elements ofU are randomly

distributed within the classes ofP , so that the probability of an elementx being in classXi is just ri
n .

We define theentropyof P by

H(P) def=
k∑

i=0

ri
n
· log2(

n

ri
).(2.9)

If θ is an equivalence relation onU andP its induced partition, we will also writeH(θ) instead of

H(P). Furthermore, ifQ is a set of attributes, then we usually writeH(Q) instead ofH(θQ).

The entropy estimates the mean number of comparisons minimally necessary to retrieve the equiva-

lence class information of a randomly chosen elementx ∈ U . We can also think of the entropy of

P as a measure of granularity of the partition: If there is only one class, thenH(P) = 0, and ifP
corresponds to the identity$, thenH(P) reaches a maximum (for fixedn). In other words, with the

universal relation there is no information gain, since there is only one class and we always guess the

correct class of an element; if the partition contains only singletons, the inclusion of an element in a

specific class is hardest to predict, and thus the information gain is maximized.
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For two partitionsP1,P2 of U with associated equivalence relationsθ1, θ2, we writeP1 ≤ P2, if

θ1 ⊆ θ2. The following Lemma may be known:

Lemma 2.1. If P1 ≤ P2, thenH(P1) ≥ H(P2).

Proof. Since every class ofP2 is a union of classes ofP1, we can suppose without loss of generality

that the probabilities associated withP1 arep1, . . . , pm, m ≥ 3, and those associated withP2 are

p1 + p2, p3, . . . , pm. Now,

H(P1) = H(p1, . . . , pm)

= H(p1 + p2, p3, . . . , pm) + (p1 + p2) ·H(
p1

p1 + p2
,

p2

p1 + p2
)

= H(P2) + (p1 + p2) ·H(
p1

p1 + p2
,

p2

p1 + p2
)

≥ H(P2),

see for example Jumarie (1990), p.21.

Corollary 2.2. If R ⊆ Q ⊆ Ω, thenH(R) ≤ H(Q).

More classes does not automatically mean higher entropy, and we need a hypothesis such asP1 ≤ P2;

for example,

1.585 ≈ H(
1
3
,
1
3
,
1
3
) > H(

2
3
,
1
9
,
1
9
,
1
9
) ≈ 1.447

For later use we mention that the entropy function has the property of strong additivity (see Jumarie,

1990, p 21):

Lemma 2.3. Suppose that{π̂i : i ≤ t} and{η̂i,j : j ≤ ni} are sets of positive parameters such that∑
i≤t

π̂i =
∑
j≤ni

η̂i,j = 1

Then,

∑
i≤t

∑
j≤ni

π̂iη̂i,j · log2(
1

π̂iη̂i,j
) =

∑
i≤t

π̂i log2(
1
π̂i

) +
∑
i≤t

π̂i ·
∑
j≤ni

η̂i,j · log2(
1
η̂i,j

).

3 Rough set prediction

The problem we want to address is a variant of the classical prediction problem:

• Given a decision attributed, which is the “best” attribute setQ ⊆ Ω to predict thed – value of

an objectx, given the values ofx under the features contained inQ?

We say “a variant”, since the RSDA rules are determined by the equivalence classes of the partitions

of U involved – see (1.1) and (2.3) –, and we are combining prediction quality with feature reduction.

The prediction problem raises two questions:
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• Which subsetsQ of Ω are candidates to be such a “best” attribute set”?

• What should a metric look like to determine and select the “best” attribute set?

In conventional RSDA, the approximation qualityγ as defined in 2.6 on page 9 is a measure to

describe the prediction success, which is conditional on the choice of attributes and measurement by

the researcher. However, approximation qualities cannot be compared, if we use different feature sets

Q andR for the prediction ofd. To define an unconditional measure of prediction success, one can

use the MDLP idea of combining

• Program complexity (i.e. to find a deterministic rule in RSDA) and

• Statistical uncertainty (i.e. a measure of uncertainty when applying an indeterministic rule)

to a global measure of prediction success. In this way, dependent and independent attributes are

treated similarly.

In the sequel we discuss three different modelsM to handle this type of uncertainty, which are based

on the information – theoretic entropy functions of Section 2.5. Our model selection criterion will be

an entropy valueHM(Q→ d) which aggregates for each setQ of attributes

• The complexity of coding the hypothesisQ, measured by the entropyH(Q) of the partition of

its associated equivalence relationθQ (see (2.9)), and

• The conditional coding complexityHM(d|Q) of d, given by the values of attributes inQ,

so that

HM(Q→ d) = H(Q) +HM(d|Q).(3.1)

The estimatorHM(d|Q) measures the uncertainty to predict membership in a class ofθd given a class

of θQ; it is important, if we want to gauge the success of a model conditioned to the knowledge given

byQ.

The importance ofHM(Q → d) is due to the fact that it aggregates the uncertaintyHM(d|Q) and

the effortH(Q) of coding the hypothesis, i.e. the predicting elements. This enables the researcher to

compare different attribute setsQi in terms of a common unit of measurement, which cannot be done

by a conditional measure of prediction success likeγ orHM(d|Q).

Since all our entropies are defined from probability measures which arise from partitions of ann –

element set, we see from the remarks after (2.9) that they have an upper bound oflog2(n).

In order to be able to compare different entropies within one modelM , we define anormalizedentropy

measure– bounded within[0, 1] – as follows: IfH(d) = log2(n), i.e. if θd is the identity, then

SM(Q→ d) def=




1, if θQ = θd,

0, otherwise.
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If H(d) � log2(n),

SM(Q→ d) def= 1 − HM(Q→ d)−H(d)
log2(n)−H(d)

.(3.2)

The measuresSM(Q→ d) are constructed in such a way that they are comparable to the approxima-

tion quality:

• If SM(Q → d) = 1, the entropy measure is as good as possible, whereasSM(Q → d) near 0

shows that the amount of coding information is near the theoretical maximum, which indicates

a poor model for predicting the attributed.

Similarly, based on the bounds0 ≤ HM(d|Q) ≤ log2(n), we can normalizeHM(d|Q) by

SM(d|Q) = 1− HM(d|Q)
log2(n)

.(3.3)

We shall show later that the measuresSM(d|Q) are comparable – and in a special case even identical

– to the approximation qualityγ.

We assume that prediction requires the specification of a probability distribution; the three models

presented below are distinguished by the choice of such distributions and their respective associated

parameters.

Throughout, we suppose that the classes ofθQ areX0, . . . , Xt with ri
def= |Xi|, and that the classes

of θd areY0, . . .Ys. Furthermore, we letc ≤ t be such that

V = X0 ∪ . . . ∪Xc,

i.e. theXi, i ≤ c, are exactly the deterministic classes ofθQ. In accordance with our previous

observations, we assume the principle of indifference, and setπ̂i
def= ri

n for i ≤ t. Also, we shall write

γ instead ofγ(Q→ d), if Q andd are understood.

3.1 Prediction I: Knowing it all

The first approach is based on the assumption that structure and amount of uncertainty can be esti-

mated by the interaction ofd andQ. In this case, each classX of θQ determines probability distribu-

tions based on its intersection with the classes ofθd. This assumes that we know

1. The classes ofθd,

2. The classes ofθQ, and

3. Their interaction, i.e. their intersections.

It follows that, in order to justify any prediction, we have to assume that the data set is a representative

sample. This is a general problem of data mining, and we have discussed it within the rough set

approach in Düntsch & Gediga (1997c).
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Uncertainty in the sense of this model is not predominantly a feature of the predictor setQ (as intended

by RSDA) but a local feature of the intersection of equivalence classesX ∈ θQ andY ∈ θd. We shall

show that the procedure “first code the rules and then apply them” has the same complexity as the

simple procedure “guess withinθQ ∩ θd” and can be viewed as identical from this point of view; in

other words, we are guided by a purely statistical view. Although this is rather different from the

RSDA approach, there is has been some effort to adopt this approach in the RSDA context (Wong,

Ziarko & Ye, 1986); we shall discuss some aspects of this work below.

The partition induced byθloc def= θQ ∩ θd are the nonempty sets in{Xi ∩ Yj : i ≤ t, j ≤ s}, and its

associated parameters are defined by

ν̂i,j =
|Xi ∩ Yj |

n
.(3.4)

Thus,

H(θloc) =
∑
i≤t

∑
j≤s

ν̂i,j · log2(
1
ν̂i,j

)(3.5)

Now, we define

H loc(Q→ d) def= H(θloc).

In information theory,H loc(Q → d) is usually written asH(Q, d); we use the notation above to

emphasize that our view of the world consists ofQ and that we want to predictd.

One problem with this approach is the symmetry

H loc(Q→ d) = H loc(θQ ∩ θd) = H loc(d→ Q).

We shall not discuss this problem here, but instead refer the reader to Jumarie (1990), p. 24ff and p.

49ff, and Li & Vitányi (1993), p. 65ff.

The proof of the following proposition is straightforward and is left to the reader.

Proposition 3.1. Letd, Q ⊆ Ω. Then,

1. H loc(Q→ d) ≥ H(d),

2. H loc(Q→ d) = H(Q) if and only ifθQ ⊆ θd.

Applying (3.2), a normalizedloc-entropy measureS loc(Q → d) is definable and – givenH(d) <
log2(n) – we obtain

S loc(Q→ d) = 1− H loc(Q→ d) −H(d)
log2(n)−H(d)

.

For eachi ≤ t, j ≤ s let

η̂i,j
def=

|Xi ∩ Yj |
ri

.
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This is the estimated probability of an element ofXi being in the classXi ∩ Yj . In other words, it is

the conditional probability ofx ∈ Yj , given thatx ∈ Xi. Observe that∑
i≤t

π̂i =
∑
j≤s

η̂i,j = 1

so that the parameterŝπi andη̂i,j satisfy the hypotheses of Lemma 2.3, and that furthermore

π̂i · η̂i,j =
|Xi ∩ Yj |

n
= ν̂i,j .(3.6)

Substituting (3.6) into (3.5) and applying Lemma 2.3 we obtain

H loc(Q→ d) = H(Q) +
∑
i≤t

π̂i ·
∑
j≤s

η̂i,j · log2(
1
η̂i,j

) = H(Q) +
t∑

i=c+1

π̂i ·
∑
j≤s

η̂i,j · log2(
1
η̂i,j

),

the latter sincêηi,j = 1 for i ≤ c. The conditional entropy ofd givenQ is now

H loc(d|Q) def=
t∑

i=c+1

π̂i ·
∑
j≤s

η̂i,j · log2(
1
η̂i,j

).(3.7)

This is the usual statistical definition of conditional entropy. Its normalization leads to the expression

S loc(d|Q) = 1− H loc(d|Q)
log2(n)

.

Example 1. cont. Table 4 shows the statistical information analysis of prediction quality within the

example information system of Table 2 on page 6.

Table 4: Statistical information measures of predicting quality

Attribute Set H loc(Q→ d) S loc(Q→ d) H loc(d|Q) S loc(d|Q) γ

{S} 1.352 0.808 0.361 0.835 0.556

{BMI} 1.891 0.568 0.900 0.587 0.000

{S, BMI} 2.197 0.432 0.222 0.814 0.778

Although both measuresS loc(Q → d) andS loc(d|Q) vote for{S} as the best predicting set for the

given data – and are in line with the results of the significance test (see Table 3 on page 11), this

convergence need not to be true in the general case. 2

Example 2. Some simple examples shall demonstrate how the average uncertainty measuresH loc

and the approximation qualityγ work, and how they differ:

Suppose thatq1 andd take the values0, 1, and suppose that we observe the probabilities

q1 = 0 q1 = 1
∑

d = 0 1/4 1/4 1/2

d = 1 1/4 1/4 1/2∑
1/2 1/2 1
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We calculateH loc(q1 → d) = 2, andH loc(d|q1) = 1.

Now, consider another attributeq2 with values0, . . .3, and the observed probabilities

q2 = 0 q2 = 1 q2 = 2 q2 = 3
∑

d = 0 1/4 1/16 1/16 1/8 1/2

d = 1 0 3/16 3/16 1/8 1/2∑
1/4 1/4 1/4 1/4 1

Whereasq2 enables us to predict 25% of the cases deterministically, namely, by the rule

If q2 = 0, thend = 0,

whereasq1 cannot be used to predictd.

Comparing the entropy measures, we observe thatH loc(q2 → d) = 2.6556 > H loc(q1 → d) = 2,

andH loc(d|q2) = 0.6556 < H loc(d|q1) = 1. Whereas the entropy measureH loc(Q → d) favors

q1, the conditional entropy measureH loc(d|Q) votes forq2 to be the better predicting attribute. The

explanation of this effect is simple: Although in the first example the two large classes predict obvi-

ously nothing, the encoding of these small number of classes can be done effectively. The prediction

success in the second table is overruled by a large number of small classes with high uncertainty,

causing a high coding complexity. If we subtract the coding complexity of the predicting attribute,

the effect of the high coding effort is eliminated, and the better prediction success ofq2 results in a

smaller conditional entropy measure.

A third table presents an example whyH loc(d|Q) is not optimal for rough set prediction under certain

circumstances:

q3 = 0 q3 = 1
∑

d = 0 7/16 1/16 1/2

d = 1 1/16 7/16 1/2∑
1/2 1/2 1

Althoughq3 predicts no outcome deterministically, the conditional measureH loc(d|q3) = 0.5436 is

better thanH loc(d|q2) = 0.6556. The essence of the result is that a bet givenq3 is preferable to

a bet based onq2. Having the knowledgeq3 = 0 enables us to predict that the outcomed = 0 is

much more likely thand = 1, whereasq3 = 1 predictsd = 1 most of the time. With attributeq2,

the bets given the valueq2 6= 1 are comparably bad. Although the betting situation givenq3 is quite

satisfactory, for a given observationi, 1 ≤ i ≤ n, of the dataset with the knowledgeq3(i) = 0 and

not knowing anything aboutd, we cannot find the valued(i) unless we search through the whole set

of d-values. In terms of RSDA, the prediction success ofq3 is as bad as that ofq1, and, consequently,

γ(q1 → d) = γ(q3 → d) = 0. 2
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As the examples show, the statistical entropy measures do not take into account the special layout of

the (rough) prediction problem, because theloc – model optimizes guessing outcome of a dependent

variable but not necessarily perfect prediction.

In the next sections we will present other entropy measures, which are integrated into the rough set

approach and which are more suitable for rough set prediction.

The earliest paper to concern itself with the connection between entropy and rough set analysis was

Wong et al. (1986). In their Theorem 2, later restated in Teghem & Benjelloun (1992), Proposition 6,

the following strong connection between RSDA and entropy measurement is claimed (translated into

our terminology):

Claim Suppose that for eachc < i ≤ t, |Xi ∩ Yj | = di for all j ≤ s. Then

H loc(d|Q) =
|Yj

Q \ Yj
Q
|

n

for all j ≤ s. 2

Consider the following counterexample:

Suppose thatU = {0, 1, . . . , 7}, and that the partition given byd has the sets

Yi = {2 · i, 2 · i+ 1}, i < 4,

and the partition given byQ is

X0 = {1, 3, 5, 7}, X1 = {0, 2, 4, 6}.

Now, Yj
Q = U andYj

Q
= ∅ for all j < 4, and thus,

|Y Q
j \Yj

Q
|

n = 1. Furthermore,|Xi ∩ Yj | = 1 for

all i < 2, j < 4, so that the hypothesis of the claim is satisfied. We now have

π̂i =
1
2
, η̂i,j =

1
4
,

and it follows that

η̂i,j · log2

(
1
ηi,j

)
=

1
4
· log2(4) =

1
2
,

∑
j<4

η̂i,j · log2

(
1
ηi,j

)
= 2.

Thus,

H loc(d|Q) =
∑
i<2

π̂i · 2 = 2,

which contradicts the claim.

We can generalize this example to show that under the assumptions of Wong et al. (1986), the value

of H loc(d|Q) does not depend so much onγ as it does on the number of classes ofθd which are not

Q – definable:
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Proposition 3.2. Suppose that no class ofθQ is deterministic, and that the elements of eachXi are

uniformly distributed among the classesYj , i.e. for eachi ≤ t, j ≤ s we have|Xi ∩ Yj | = di. Then,

H loc(d|Q) = log2(s+ 1).

Proof. By the hypothesis we have for alli ≤ t, j ≤ s

|Xi ∩ Yj| = di,

and therefore it follows from
∑

j ηi,j = 1 that

η̂i,j =
di

ri
=

1
s+ 1

.

Thus,

H loc(d|Q) =
∑

i

π̂i ·
∑

j

η̂i,j · log2

(
1
η̂i,j

)

=
∑

i

π̂i ·
∑

j

1
s + 1

· log2(s+ 1)

=
∑

i

π̂i · log2(s + 1)

= log2(s+ 1),

which proves our claim.

3.2 Prediction II: Playing it safe

Whereas the entropy measures in the previous section are good candidates to be measures of optimal

guessing strategies, based on the estimated parameters of the distributions of the cross-classification

d ×Q, a rough set approach should not be based on “guessing” but on “knowing”. This means that

the observations which can be predicted perfectly are assumed to be the realization of a systematic

process, whereas the nature of the indeterministic rules is assumed to be unknown to the researcher.

Based on these arguments, given a classY of θd, any observationy in the region of uncertainty

Y
Q \ Y Q is the result of a random process whose characteristics are unknown; in other words, our

given data is the partition obtained fromQ, and we know the world only up to the equivalence classes

of θQ. Given this assumption, no information within our data set will help us to classify an element

y ∈ U \ V , and we conclude that each suchy requires a rule (or class) of its own. In this case,

any element ofU \ V may be viewed as a realization of an unknown probability distribution with its

uncertainty1
n log2(n). Note that, unlike the previous one, this approach assumes that only the classes

of θQ are observed within a representative sample, or – in terms of parameters – the approach requires

only the probability distributionπθQ
(and its estimateŝπθQ

) of the classes ofθQ. Thus, we regardQ

(and its associated equivalence relationθQ) as the given data, and, in accord with the principles of

RSDA, we only know the upper, respectively the lowerQ – approximation of any classY of θd.
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It follows that we may only apply the deterministic part ofQ → d, and ignore whatever might be

gained from the indeterministic rules. Thus, we use only those classes ofθQ which are contained in

V , and assume that eachy ∈ U \ V is in its own class. In other words, we assume themaximum

entropy principleas a worst case, and look at the equivalence relationθdet defined by

x ≡θdet y
def⇐⇒ x = y or there exists somei ≤ c such thatx, y ∈ Xi.

Its associated probability distribution is given by{ψ̂i : i ≤ c+ |U \ V |} with

ψ̂i
def=



π̂i, if i ≤ c,

1
n , otherwise.

(3.8)

We now define theentropy of deterministic rough prediction(with respect toQ→ d) as

Hdet(Q→ d) def= H(θdet) =
∑

i

ψ̂i · log2(
1
ψ̂i

)

and have

Hdet(Q→ d) =
∑
i≤c

π̂i · log2(
1
π̂i

) + |U \ V | · 1
n
· log2(n)

=
∑
i≤c

π̂i · log2(
1
π̂i

)

︸ ︷︷ ︸
Knowledge

+ (1− γ) · log2(n)︸ ︷︷ ︸
Guessing

.

This gives us

Hdet(d|Q) def= Hdet(Q→ d) −H(Q)

= (1 − γ) · log2(n) −
∑
i>c

π̂i · log2(
1
π̂i

).

Sinceθ+Q ⊆ θQ ∩ θd, we note thatθQ ∩ θd has no more classes thanθ+Q , and therefore

H loc(Q→ d) =
∑
i≤c

π̂i · log2(
1
π̂i

) +
t∑

i=c+1

∑
j≤s

ν̂i,j · log2(
1
ν̂i,j

)

≤
∑
i≤c

π̂i · log2(
1
π̂i

) + (1 − γ) · log2(n),

= Hdet(Q→ d),

which impliesH loc(d|Q) ≤ Hdet(d|Q).

If we compare theHdet(Q → d) andH loc(Q → d) in terms of necessary parameters, we have to

assume for the computation ofH loc(Q→ d) that the deterministic rules as well as the indeterministic

rules are representative within the sample of the underlying population. Indeed, theH loc-measures do

not distinguish – up to quantitative values – between deterministic and indeterministic rules.
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In contrast,Hdet(Q→ d) requires a representativeness only for the deterministic rules, and assumes

that any indeterministic rule, which is valid form objects, consists ofm unique (individual) rules,

gathered from a random world which cannot be replicated.

The proof of the following is straightforward, and is left to the reader:

Proposition 3.3. Letd, Q ⊆ Ω. Then,

1. Hdet(Q→ d) ≥ H(d),

2. Hdet(Q→ d) = H(Q) if and only ifθQ ⊆ θd.

3. Hdet(Q→ d) = log2(n) if and only ifV = ∅ or V is a union of singletons ofθQ. 2

The extremes forHdet(Q→ d) are

• θQ is the identity relation, and everything can be explained byQ,

• γ(Q→ d) = 0, and everything is guessing.

In both cases we haveHdet(Q→ d) = log2(n).

The following gives the bounds within whichHdet(d|Q) varies:

Proposition 3.4. (1− γ) ≤ Hdet(d|Q) ≤ (1 − γ) log2(n− |V |).

Proof. First, observe that by (2.4) on page 8,log2(n− |V |) ≥ log2(2) = 1.

The minimum value of
∑

i>c π̂i · log2(π̂i) is obtained whenc = t− 1, and in this case,

∑
i>c

π̂i · log2(π̂i) =
n − |V |
n

· log2(
n

n− |V | )

= (1 − γ) · log2(
1

1 − γ
).

Therefore,

Hdet(d|Q) = (1 − γ) · log2(n) −
∑
i>c

π̂i · log2(
1
π̂i

)

≤ (1 − γ) · log2(n) − (1− γ) · log2(
1

1− γ
),

= (1 − γ) · (log2(n) − log2(
1

1− γ
),

= (1 − γ) · log2(n · (1 − γ))

= (1 − γ) · log2(n− |V |).

For the other direction, we first note that each nondeterministic classX has at least two elements, and

that
∑

i>c π̂i · log2(
1
π̂i

) has a maximum if either each such class has exactly two elements, or all but
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one class have two elements and one class has three elements. Since the value of
∑

i>c π̂i · log2(
1
π̂i

)
is greater in the first case, we assume w.l.o.g. thatn− |V | is even, so that

∑
i>c

π̂i · log2(
1
π̂i

) =
n − |V |

2
· 2
n
· log2(

n

2
)

= (1 − γ) · log2(
n

2
).

Therefore,

Hdet(d|Q) ≥ (1 − γ) · log2(n) − (1 − γ) · log2(
n

2
)

= (1 − γ) · (log2(n)− log2(
n

2
))

= (1 − γ) · log2(2)

= 1 − γ,

which proves our claim.

We see thatHdet(d|Q) is independent of the granularity – i.e. the probability distribution – of the

deterministic classes ofθQ, and that it is dependent on the granularity of the classes leading to non-

deterministic rules: The higher the granularity of those classes, the lowerHdet(d|Q). We use this to

show

Proposition 3.5. If Q ⊆ R, thenHdet(d|R) ≤ Hdet(d|Q).

Proof. By the remark above, we can assume that every deterministic class ofθQ is a class ofθR. This

implies thatθ+Q ⊆ θ+R , and hence,

Hdet(R→ d) ≤ Hdet(Q→ d).

Since furthermoreH(Q) ≤ H(R) by Corollary 2.2, the conclusion follows.

A similar result does not hold forHdet(Q→ d) as the example given in Table 5 shows: There,

Hdet({q1} → {p}) = 1.5 < 2 = Hdet({q1, q2} → {p}) = Hdet({q2} → {p}).

Table 5: Hdet(Q→ d)

U q2 q1 p

1 1 1 1

2 2 1 2

3 3 2 2

4 4 2 2

22



As in (3.2), we define the normalized relative deterministic prediction successSdet(Q → d), which

we also will callnormalized rough entropy(NRE): First, letθd = $, so thatH(d) = log2(n). Then

Sdet(Q→ d) def=




1, if θQ = $,

0, otherwise.
(3.9)

Otherwise, ifH(d) < log2(n), we set

Sdet(Q→ d) def= 1 − Hdet(Q→ d)−H(d)
log2(n) −H(d)

,(3.10)

In this way we obtain an measure of prediction success within RSDA, which can be used to compare

different rules in terms of the combination of coding complexity and the prediction uncertainty in the

sense that a perfect prediction results inSdet(Q→ d) = 1, and the worst case is atSdet(Q→ d) = 0.

Sdet is an unconditional measure, because both, the complexity of the rules and the uncertainty of the

predictions, are merged into one measure.

The question arises, where the approximation functionγ is positioned in this model. Proposition 3.4

shows that, for fixedQ,

max{Hdet(d|R) : γ(R→ d) = γ(Q→ d)} = (1− γ) · log2(n− |V |),

and we denote this value byHdet
max(d|Q). The following result tells us that, for fixedd,Hdet

max(d|Q) is

strictly inversely monotone toγ(Q→ d):

Proposition 3.6. γ(Q→ d) < γ(R→ d) ⇐⇒ Hdet
max(d|R) < Hdet

max(d|Q).

Proof. “⇒”: The hypothesisγ(Q→ d) < γ(R→ d) implies that|VQ→d| � |VR→d|. Thus,

Hdet
max(d|R) = (1 − γ(R→ d)) · log2(n− |VR→d|),

< (1 − γ(Q→ d)) · log2(n− |VQ→d|),
= Hdet

max(d|Q),

“⇐”: First note, that fork ≥ 1,

k · log2 k < (k + 1) · log2(k + 1).(3.11)

We can also assume that0 < Hdet
max(d|R), so thatU \ VR→d 6= ∅. Now,

Hdet
max(d|R) < Hdet

max(d|Q)

⇒ (1 − γ(R→ d)) · log2(n− |VR→d|) < (1− γ(Q→ d)) · log2(n − |VQ→d|)
⇒ (n − |VR→d|) · log2(n− |VR→d|) < (n− |VQ→d|) · log2(n− |VQ→d|)
⇒ (n − |VR→d|) < (n− |VQ→d|) by (3.11)

⇒ |VQ→d| < |VR→d|
⇒ γ(Q→ d) < γ(R→ d).

This completes the proof.

23



We observe that

• RSDA which tries to maximizeγ is a procedure to minimize the maximum of the conditional

entropy of deterministic rough prediction.

In terms of conditional uncertainty, we may viewγ = γ(Q → d) as a crude approximation of a

measure of normalized prediction success, because

Sdet
max(d|Q) = 1− Hdet

max(d|Q)− min{Hdet
max(d|R) : R ⊆ Ω}

max{Hdet
max(d|R) : R ⊆ Ω} − min{Hdet

max(d|R) : R ⊆ Ω}
= 1− Hdet

max(d|Q)− 0
log2(n) − 0

= γ − (1 − γ)
log2(1 − γ)

log2(n)

= γ + O
(

1
log2(n)

)
.

Proposition 3.5 does not extend to the hypothesisγ(Q→ d) < γ(R → d), and thus, a result similar

to 3.6 does not hold, as the following example shows: Consider the equivalence relationsθd, θQ, θR

with the following partitions:

θd : {1, 2, 3}, {4, 5, 6}, θQ : {1, 4}, {2, 5}, {3, 6}, θR : {1}, {2, 3, 4, 5, 6}.

Then,

γ(Q→ d) = 0 <
1
6

= γ(R→ d).

On the other hand,

Hdet(d|Q) = log2(6)− log2(3) = 1 <
5
6
· log2(5) =

5
6
· log2(6)− 5

6
· log2(

6
5
) = Hdet(d|R).

Example 1. cont.

Table 6 presents the rough information analysis for the data of the example given in Table 2. We have

skipped the presentation of theHdet(d|Q)-measures, because – as shown above – they are identical

with γ for the purpose of comparing the prediction success of different attribute sets. The results show

Table 6: Rough information measures of the predicting quality within the example information system

Attribute Set Hdet(Q→ d) Sdet(Q→ d) S loc(Q→ d) γ Significance

{S} 1.880 0.573 0.808 0.556 0.047

{BMI} 3.170 0.000 0.568 0.000 1.000

{S, BMI} 2.197 0.432 0.432 0.778 0.144

that the NRESdet(Q → d) is a good candidate to evaluate the rough prediction quality of attribute

set, because it produces the same order of “goodness in predictability” as the significance test, without

the limitations of the significance test. Inspecting the results of{BMI} in Table 6, one can see that

the “defects” ofS loc(Q→ d) have been repaired. 2
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3.3 Prediction III: Living side by side

In Section 3.2 the predictionHdet(Q → d) consists of two parts: The absolute correct deterministic

part (the union of the lower bound approximations) and the random part. The prediction within the

random part is done using an “element – to – class” mapping, because of the assumption that no

uncertain observation can be predicted given any available source of data. If we are willing to use

the information provided by the indeterministic rules which are offered by RSDA, the uncertainty is

restricted by those rules and we need another entropy estimation.

This approach to handle uncertainty recognizes thatθd induces some structure onU \ V : If Xi is a

class ofθQ which does not lead to a deterministic rule, there are classesYi,0, . . . , Yi,k of θd, k ≥ 1,

such that〈Xi, Yi,j〉 ∈ Q → d, i.e. Xi intersects eachYi,j \ V . Uncertainty givenXi can now be

measured by the uncertainty within{Yi,0 \ V, . . . , Yi,k \ V } which also requires knowledge of the

probability distribution induced byθd. The assumption can be interpreted in the sense that an inde-

terministic rule produces a certain degree of imprecision in the prediction ofθd, but that theamount

of uncertainty is based solely on the uncertainty withind and does not interact withQ. Even though

this is not “pure rough set theory”, it is certainly consistent with it: The procedure describes the up-

per bounds of sets defined byθd in terms of a suitable probability distribution. As we shall not be

using the method in the sequel, we will spare the reader the somewhat involved definitions of the

resulting entropy measuresH∗(Q→ d) andH∗(d|Q). We shall just mention, that, unlikeHdet(d|Q)
andH loc(d|Q), the conditional entropyH∗(d|Q) is not (anti-) monotone. This result is a drawback,

because the monotone relationship of⊆ and a measure of approximation quality seems to be quite

natural. As a consequence, within a search process we cannot useH∗(d|R) as stop criterion like the

other conditional measuresγ, Hdet(d|R), orH loc(d|R). Therefore it seems that the practical value

of theH∗–measure is rather limited, although it takes a representativeness assumption which is in be-

tween deterministic rough entropyHdet and the statistical entropyH loc: TheH∗ – approach assumes

that the probability distributions within the upper bound of any class ofθd are representative, whereas

H loc assumes that any conditional probability distribution is representative, andHdet assumes that the

probability distribution within the lower bound of any class ofθd is representative for the population.

We shall investigate this method in more detail in subsequent research.

4 Data analysis and validation

The approach which is closest to the non–invasive philosophy of RSDA is the entropy of deterministic

rough predictionHdet(Q → d) which combines the principle of indifference with the maximum

entropy principle in an RSDA context. We advocate this type of entropy because of our basic aim to

use as few assumptions outside the data as possible:

“Although there may be many measuresµ that are consistent with what we know, the

principle of maximum entropysuggests that we adopt thatµ∗ which has the largest en-

tropy among all the possibilities. Using the appropriate definitions, it can be shown that
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there is a sense in which thisµ∗ incorporates the ‘least’ additional information” (Jaynes,

1957).

To obtain an objective measurement we use the normalized rough entropy (NRE) of (3.10) on page

23, where

Sdet(Q→ d) = 1− Hdet(Q→ d) −H(d)
log2(|U |)−H(d)

.(4.1)

If the NRE has a value near 1, the entropy is low, and the chosen attribute combination is favorable,

whereas a value near 0 indicates casualness. The normalization does not use moving standards as

long as we do not change the decision attributed. Therefore, any comparison of NRE values between

different predicting attribute sets makes sense, given a fixed decision attribute.

The implemented procedure searches for attribute sets with a high NRE; since finding the NRE of

each feature set is computationally expensive, we use a genetic – like algorithm to determine sets with

a high NRE.

We have named the method SORES, an acronym for Searching Optimal Rough Entropy Sets. SORES

is implemented in our rough set engine GROBIAN (Düntsch & Gediga, 1997a)1.

4.1 Validation

In order to test the procedure, we have used 14 datasets available from the UCI repository2 from

which the appropriate references of origin can be obtained. These are a subset of the datasets which

were used by Quinlan (1996) to test Release 8 of C4.5.

The validation by the training set – testing set method was performed by splitting the full data set

randomly into two equal sizes 100 times, assuming a balanced distribution of training and testing data

(TT2 method). The mean error value is our measure of prediction success.

We choose only half of the set for training purposes in order to have a basis for testing the predictive

power of the resulting attribute sets. Because all data sets contained continuous attributes and most

of them missing values as well, a preprocessing step was necessary to apply the SORES algorithm to

these data sets. Missing values were replaced by the mean value in case of ordinal attributes, and by

the most frequent value (i.e. the mode) otherwise. The preprocessing of the continuous data was done

by three different global discretization methods:

Method 1 consists of the global filtering method described in Section 2.3 which influences the NRE,

but does not affectγ, and thus has no influence on the dependency structure. This results in minimal

granularity of attributes with respect to the decision attribute. The other two discretization methods

cluster the values of an attribute into ten, resp. five, classes with approximately the same number of

objects. The discretization method can be refined by transforming theH loc–based methods of local

1All material relating to SORES, e.g. datasets, a description of the algorithm, as well as GROBIAN, can be obtained

from our websitehttp://www.psycho.uni-osnabrueck.de/sores/
2http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 7: Datasets and SORES validation

Dataset SORES C4.5(8)

Attributes No. of
Name Cases Classes

Cont. Discr. pred. attr.
Error Error

Anneal 798 6 9 29 11 6.26 7.67

Auto 205 6 15 10 2 11.28 17.70

Breast-W 683 2 9 - 2 5.74 5.26

Colic 368 2 10 12 4 21.55 15.00

Credit–A 690 2 6 9 5 18.10 14.70

Credit–G 1000 2 7 13 6 32.92 28.40

Diabetes 768 2 8 - 3 31.86 25.40

Glass 214 6 9 - 3 21.79 32.50

Heart–C 303 2 8 15 2 22.51 23.00

Heart–H 294 2 8 15 5 19.43 21.50

Hepatitis 155 2 6 13 3 17.21 20.40

Iris 150 3 4 - 3 4.33 4.80

Sonar 208 2 60 - 3 25.94 25.60

Vehicle 846 4 18 - 2 35.84 27.10

Std. Deviation 10.33 8.77

discretization of continuous attributes given in Catlett (1991) and Dougherty, Kohavi & Sahami (1995)

to the proposedHdet – measure. This is a task which still needs to be done, but which is outside the

scope of the current introductory article.

In Table 7 we list the basic parameters of the data sets, and compare the SORES results with the

C4.5 performance given in Quinlan (1996). This has to be taken with some care, since Quinlan uses

10–fold cross validation (CV10) on data sets optimized by

“ . . . dividing the data into ten blocks of cases that have similar size and class distribu-

tion” (Quinlan, 1996, p.81, footnote 3.).

Because TT2 tends to result in smaller prediction success rates than CV10, the comparison of SORES

and C4.5 is based on a conservative estimate.

The SORES column “No. of pred. attr.” records the number of attributes which are actually used for

prediction; this is a prominent feature of RSDA, and in most cases considerably less than the number

of all attributes.

The results indicate that SORES in its present version can be viewed as an effective machine learning

procedure, because its performance compares well with that of the well established C4.5 method: The

odds are 7:7 (given the 14 problems) that C4.5 produces better results. However, since the standard

deviation of the error percentages of SORES is higher than that of C4.5, we conclude that C4.5 has a

slightly better performance than the current SORES.
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5 Summary and outlook

In the first part of the paper we have proposed three approaches to estimate the unconditional predic-

tion success within the context of RSDA using various entropy measures.

The statistical entropy measure is not well suited, because the assumption of a symmetric information

exchange of predicting and predicted attributes is not given within the RSDA frame. Two modifi-

cations are discussed: The first one,Hdet, relies only on the information given by the deterministic

rules, and assumes an atom–like structure of all other information. The other approach,H∗, addition-

ally uses the knowledge about the distributions within the indeterministic rules, but has the drawback

of lacking monotony within the conditional measureH∗(d|Q). The measureHdet(Q → d) seems

to be the most suitable measure to compare attribute setsQ1, . . . , Qk in terms of combined coding

complexity and expected prediction uncertainty.

In the second part of the paper, we have applied the method of searching optimal rough entropy sets

(SORES) to real life data sets. The method seems to be well applicable, since we show that C4.5

performs better than SORES on only 7 of 14 problems, although C4.5 is used in a fine tuned version

(Release 8) and SORES, at present, is still quite “raw”.

Fine tuning of the SORES procedure will consist of – at least – the following steps.

• Both types of measures –HM(Q → d) andHM(d|Q) (whatever modelM is used) – are to

some extent suitable measures for finding optimal sets for prediction, and thus, any weighted

sum

HM(Q, d, ω) = ω ·HM(Q→ d) + (1 − ω) ·HM(d|Q),

(0 ≤ ω ≤ 1) is a suitable measure as well. Ifω = 1, we weight the effort of searching for a rule

as high as the effort of reducing uncertainty of the dependent attribute. Ifω = 0 is chosen, then

the effort of coding the rules is neglected. Finally, any0 < ω < 1 estimates the relative effort

of finding a rule with respect to finding an object under uncertainty. The methods in Section

3 are based on anω = 1 procedure, but it will be worthwhile to compare these results with

procedures usingω < 1.

• The proposed method – as a symbolic data analysis procedure – is rather time consuming. In

order to enhance the applicability of the procedure to real life data sets, the optimization cannot

be performed on big samples, but some kind of subsample optimization must be implemented.

The theory of dynamic reducts (Bazan, Skowron & Synak, 1994, Bazan, 1997) is a step towards

such an enhancement.

• The discretization of continuous attributes is another problem which has to be solved by any

symbolic data analysis technique. Although the global discretization procedures described

above work quite well in the presented numerical examples, a local discretization procedure,

which optimizes the chosen criterion – e.g.Hdet(Q → d) – directly, can be expected to pro-

duce an even better prediction quality.
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Finally, we should like to point out that, except for the two numerical global discretization methods,

all of the procedures developed in Section 3 do not use any external parameters, and only the repre-

sentation assumptions stated for each of the three approaches. Thus, model assumptions are kept to

a minimum, and the procedures can (at least) serve as a preprocessing mechanism before “harder”

computational or statistical methods are applied.
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