Simple data filtering in rough set systems
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In symbolic data analysis, high granularity of information may lead to
rules based on a few cases only for which there is no evidence that they
are not due to random choice, and thus have a doubtful validity.

We suggest a simple way to improve the statistical strength of rules ob-
tained by rough set data analysis by identifying attribute values and inves-
tigating the resulting information system. This enables the researcher to
reduce the granularity within attributes without assuming external struc-
tural information such as probability distributions or fuzzy membership
functions.
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1 Introduction

Major aims of data analysis are to discover which features or attributes are relevant
for data description and/or prediction, and to filter out the irrelevant ones. A sym-
bolic approach to achieve these aims is Rough Set Data Analysis (RSDA) which
has been developed by Z. Pawlak and his co—workers since the early 1980s, and has
recently received wider attention as a means of data mining, cf [10]. The original
view behind the rough set model was the observation that
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The information about a decision is usually vague because of uncer-
tainty and imprecision coming from many sources ... Vagueness may
be caused by granularity of representation of the information. Granular-
ity may introduce an ambiguity to explanation or prescription based on
vague information [14].

The rough set model is intended to be a structural, non—numerical method of infor-
mation analysis; quantitative aspects are of only secondary interest.

Knowledge representation in the rough set model is done via information systems
which are a tabular form of an ®JECT — ATTRIBUTE VALUE relationship. An
example which we will use to demonstrate our approach is given in Tahle 1

We interpret this information system as follows:

— x1,...,Tg are persons.

— The attributen is a combined measure of medical indicators for the risk of a
heart attack, while is a combined measure of psychological indicators, see e.g.
[2,15].

— The values of the risk measures are

(1) No RIsK,

(2) SVALL RISK,

(3) MEDIUM RISK,
(4) HIGH RISK,

(5) VERY HIGH RISK.

— The decision variable H is interpreted as the observation of a heart attack within
a predefined time span, and we code

1 — HEART ATTACK, O — NO HEART ATTACK

What is given in Table 1 is often called “raw data”. These are unfiltered measure-
ments of attributes within the domain under investigation. However, it can be ar-
gued that there is no such thing as observed “raw data”: Which attributes are cho-
sen, and which measurements are used, are pragmatic decisions by researchers,
how they want to represent the dependencies of real life criteria in the best possible
way.

In other words, following [8], we adopt the attitude that
— THE RESEARCHERS CHOICE OF ATTRIBUTES AND MEASUREMENTS ARE PART OF

THE MODEL BUILDING PROCESS AND OF THE DATA ANALYSIS

2 Tables are placed at the end of this paper



RSDA is therefore a conditional data analysis strategy, dependent on the choice of
attributes and measurement models. The relevance of the chosen attributes and their
measurement can be tested by statistical techniques. In [5] we have developed two
simple procedures, both based on randomization techniques, which evaluate the
validity of prediction based on the approximation quality of attributes of rough set
dependency analysis. These procedures seem to be particularly suitable to the soft
computing approach of RSDA as a data mining tool which is data drasethdoes

not require outside information. In particular, it is not assumed that the information
system under discussion is a representative sample. The reader is invited to consult
[7] or [11] for the background and justification of randomization techniques in these
situations.

It follows that — like other types of data analysis — RSDA needs a preprocessing step
which results in data which is suitable for further analysis. This preprocessing step
should be part of the measurement procedure; although highly desirable in certain
situations — for example when a system has an empty core or when the obtained
rules are based on a few observations —, it seems that it has not yet been addressed
as an integral part of rough set analysis.

In this paper we shall show that some of the pragmatic aspects of measurement
— say, how to choose an attribute coding to produce valid prediction rules — can
be investigated in the context of RSDA. Our main tool willliaary information
systemsthese are data tables in which every column has only two values.

The organization of the paper is as follows: The next section will give the formal
definitions of information systems and the apparatus needed for rough set depen-
dency analysis; we exhibit some structural properties of binary information sys-
tems, and describe a procedure how to associate a binary information system with
a general information system. We then apply these instruments to reduce granula-
tion of attribute measurements in order to obtain a higher strength of prediction in
terms of the statistical significance test of [5].

The procedures discussed below — e.g. the statistical evaluation of rules and the
simple data filtering described in this paper — are implemented in our rough set
engine GROBIAN [6] which we have used for the numerical calculations.

2 Knowledge representation

An information systenis a tupleZ = (U, 2, V,, f,)q4eq, Where

— U is a finite set of objects,
— Qs a finite set of attributes (features)
— For eachy € (,



-V, is a set of attribute values far
- Eachf, : U — V is aninformation function

To avoid trivialities, we assume that eakchhas at least two elements.

With each subse}) of 2 we associate an equivalence relatignon U by setting

() T =g, y = fy(z) = fy(y) forallq € Q.

We shall usually writé, instead ofd;,,, and, more generally, will identify single-
tons with the element they contain, if no confusion can arise. The partition associ-
ated withd, is denoted byP(Q).

Given@, P C (, each classX of §, intersects one or more class€s: < kx, of
Op . This leads ta), P — rulesof the form

Deterministic: x € X — x €Y.
Indeterministic: z € X - x€YyVY;...VY,,,Wherekx > 0,andX NY; # 0
fori < kx.

X € P(Q) is called P-deterministic(or just deterministicif P is understood) if

it is contained in a class aP. We use() — P for the conjunction over ally, P
—rules, and call) — P deterministidf all @), P — rules are deterministic. In this
case, we writé) = P, and we have a set of rules with which we can locally replace

Pbya@.
The approximation quality (@) — P) of a ruleQ) — P is defined as

2) Q= p) = ZHXEPQ): )’(Uls’ P-deterministig|

This is the cardinality of the positive region &fwith respect tay, cf [13]. Note
that() = Pifand only ify(Q — P) = 1.

Given P C , of particular interest in rough set dependency theory are those at-
tribute sets) which are minimal with respect to the property tliat=- P. A set

Q with this property is called aule reduct® of P. If P = Q, we callQ simply a

reduct Thecoreof Z — denoted byore(Z) — is he intersection of all reducts 0f

It is not hard to see, that eadh C 2 has a rule reduct, though this need not be
unique. In rough set theory, the core elements are deemed essential for the knowl-
edge representation, and an empty core indicates a high substitution rate among the
attributes. This may be due to incomplete preprocessing of the “raw data” which
results in an information system in which the granularity is still too high. We shall
discuss this problem in Section 4.

3 This differs from the usual definition of reduct, see [13]



It may be worth to point out that forming of rule reducts is a procedure local to the
attribute sets involved. In particular, reductbbr its core only describe how the
finest partition ofU — induced by the whole system — can be obtained by (possibly)
fewer features than all d@. In algebraic terms, a rule redu@tof P corresponds

to one concrete inclusion ¥z : R C Q}, and affects onlyp. The statement
“attributes in a reduct can replace the whole attribute set” is not globally true, since
only one equation in the whole semilattice of induced equivalence relatidhssin
addressed.

3 Binary information systems

If the value rangé/, of an attribute has exactly two elemenjss called abinary
attribute; if each attribute is binary,is called abinary information system

There is a long standing tradition (for example [1,9]) to distinguish betvegen
metricandasymmetridinary attributes. In an asymmetric attribute, the valjesf

an attributey are based on an indicator function whose value we sg} as{0, 1}:

If f,(z) = 1we have anindicator for the existence of a feature — e.g. the appearance
of a symptom or the presence of a certain colour — whefgasg = 0 indicates that

we know nothing about with respect to the attributg

Suppose that the researcher has identified the&28ebf asymmetric binary at-
tributes (which may be empty), and tHagt= {0, 1} for everyq € Q. With Z we
associate a binary information systérfi = (U, 27, {0, 1}, f),cq» as follows:

First, letQ™ .= Q \ QP, and then set
OF .= {{q,v) : g € QM v eran(f,)}UQP,
whereran( f,) denotes the set of values fif.

Note that2? N QF = QP. The information functiong? are defined as follows: If
t € QP thenfP .= f,. Otherwise, there arge Q¥ v € V, such that = (q,v),
and we set

B, 1, if fy(x) =,
felz) = {0, otherwise.

In this case, we say that the binary attribtiteelongs to the clasﬁ(;l(v) of 4,.

A similar construction which, however, does not distinguish between symmetric
and asymmetric binary attributes was given in [12].

Table 2 shows the binarization of the example given in Table 1. For better readabil-



ity we have writtenmn, resp.p; instead ofim, i), resp.(p, i). Furthermore, because
prediction in rough set analysis does not take into account (a)symmetry in the de-
cision attribute(s), we descrikdé simply by its symmetric version.

In going fromZ to ZZ, the core is reduced unle®s= 77, as we shall show below.
First, we quote a result from [3]:

Lemma 1 Let.7 be an information system with attribute $&tThen,

p € core(J) if and only ifdq C o ¢}

Proposition 2 core(Z?) = core(Z) N QP.

PROOF. “C": Lett € core(Z?), and assume that= (q,v) € QM. By Lemma
1 there arer,y € U such thatf?(z) = fP(y) forall s € QF \ {t}, andfP(z) #
f2(y). Assume w.l.o.g. thaf,(z) = v, f,(y) = w, andv # w. Then,s := (q,w) €
QP \ {t}, and hence,

fi(x) = f7(y) = 1. ie fy(x) = fo(y) = w,
a contradiction; thusore(Z%) C QP.

If ¢ € core(Z”) andq & core(Z), thenby, = g 43, and it follows from the fact that
q is binary thatgs, (3 = Ooz. This contradicty € core(Z7).

“D" Let g € core(Z) N QP If ¢ & core(ZP), then, as above,
O = bar = Oos\(g = Oar\(q),

contradictingy € core(Z). O

4 Granularity analysis using binary information systems

Binarization suggests a way to reduce the number of values of an attribute with-
out loss of dependency information in a specific situation, and at the same time
increase the statistical significance of the generated rules. We exemplify our proce-
dure in this section, and then present the theoretical background and the statistical
justification in the following sections.

Consider again the information systefn given in Table 1. One easily sees that
O¢m.py IS the identity relatiorid;; onU, and therefore we have the rule

{m,p} = H.



One the other hand, the statistical rough set analysis of [5] shows that the chance
to obtain this dependency by a random process is close to 100%. This is surprising,
because the dependency

High medical and high psychological risk leads to heart attack

is obviously present. But note that the latter statement uses far less information
thanZ; gathers: There are only the two risk valudsgh, not high}. If we recode
the risk values accordingly, we obtain the information sysfgraf Table 3.

We still have the dependenégyn, p} = H; the statistical analysis, however, shows

that the chance to get the same result by random is about 2.8%. Hence, this depen-
dency can be considered significant. The higher statistical strength of the prediction
given inZ, is due to fact that the risk groups 1, 2, and 3 are identified, as well as
the 4 and 5 risk groups. The differences within these risk groups are neglected, and
only the difference between the risk groups remains as a characteristic of the set
of prediction attributeg) = {m, p}. This leads to a duplication of rule instances
which influence the statistical strength in a positive way. Before we present the
general background, we outline the procedure how to get ffpta 7s:

(1) Build the binary extensioi® as shown in Table 2.

(2) Find the binary attributes;, p; for which

(3) (V.I'EU)[fmi(l'):1—>fH(.I'):1],

(4) (Vo e U)lfy; () =1 = fulz) =1],

and build their union withimn, resp.p in the following way: If, for example,

My, - - . , m;, Satisfy (3), then we define a new binary attributg,_;, by
fmiy o (2) =1 Ly fm;(x) = 1 forsomej € {ip,...  ir},

< max [, (r) =1,
je{iov---ﬂk}f ]( )

and simultaneously replaee;,, . .. ,m;, by the new attributen;, ;, .

Because{m,, ms} as well as{p4, p;} exhibit this property, we replace
the two attributesn,, ms (p4, ps) by a new aggregate attribute,s (ps5) to
obtain the binary information syste(#)* given in Table 4.

(3) Similarly, we find the attributes:;, p; for which

(Vo € U)[fm:(2) =1 — fu(z)
(Vo e U)lfy;(x) =1 = fu(z)

and build their union withinn, resp.p. We see that only{p,, p;} has this
property, so that we obtain

If H has more classes, we have to perform such a step of collecting posi-
tive classes of the independent attributes for each clags of

0]7
0]7



(4) Perform a rough set dependency analysis with the attributes of this system
with respect to the decision attributé. This results in the system of Table
6.

(5) Choose all rule reducts with the smallest cardinality. In the example there
is only one collection of attributes that meets this condition, namely, the set

{771457 p45}.

Because all other binary attributes are superfluous to express the dependency of H
from m and p, we finally obtaiff, of Table 3.

5 The general case

LetZ = (U,Q,V,, f,)qeq be an information system, where we assume for sim-
plicity that ran f, = V, for all ¢ € 2. Suppose thaf2? = {q,...,¢,} with
V,, = {u,...,u!"}, and letg* be the binary attribute belonging td, i.e.

fop(x) =

7

{1,if fo:(2) = uk,

0, otherwise.

Itis not hard to see that

b= ) Oy

k<t(s)

Let d be a decision attribute generating the partit®n= {F5,...,P,} of U.
Note that we are not restricting ourselves to a binary decision attribute, but allow
an arbitrary partition (which, for example, can be equdd{p

Foralli <n, 7 <m we set

M(i,j) = {k <t(i): fq_il(ul?) C P}

1

If M(i,7) # 0, we define a new binary attribut€ (¢;, P;) by

fwigry(@) =1 <% f,.(x) = u¥ for somek € M(i, j)

= Y, fplo)=1L

keM (3,5)

Foralli < n, j < m we now simultaneously replace the binary attributes belong-
ingtoul, k € M(i,j) of ¢; —i.e. those that correspond to the classe,ofvhich

are wholly contained irP; — by the single attributél’(¢;, P;); this corresponds to
steps 2, 3 above.



Let ZZ be the resulting binary information system.l@cal binary rule reduct of

P now is a rule reduct oP in the systentZ? (Step 4 above). We say “local” rule
reduct, since we collect binary attributes within the attributes of the original system.
If we collect across attributes as well, we may speakglblal binary rule reduct

Since in going fronZ? to 7P we do not change the number of occurrencesof

in the rows ofZ”, we can replace the attribute valugsg), . . . ,uf(i)} belonging to
q; by the set

{uif ok ¢ U M@, 5)}U{W (g, P) : M(i, ) # 0},

Jj<m

and obtain a new attributg by using the obvious attribute function. The classes
of the partition associated witfj in the new system are unions of classed pf

in such a way, that elements are identified wh@)se- classes are contained in the
same element dP.

For@ C Q, we letQ* = {¢* : ¢ € Q}. For later use, we show

Lemma 3 If Q C 2, andQ*, d, P are as above, then

Q@ —d) =7(Q" — d).

PROOF. Recall that

X H{X € P(R) : X is d—deterministig|
N 19 '

v(R — d)

If Y is a class ofP, then
Z={XeP@Q): :XCY}

contains exactly those elementdofvhich contribute to thé) — deterministic part
of Y. SinceZ is a class of)*, and everyl-deterministic class d@fy- has this form,
the conclusion follows. O

6 Statistical justification

This section will show that usage of local binary rule reducts is useful to enhance
the statistical strength of the prediction; we shall give an example in Section 7. In
what follows, Y is the set of all permutations @f, and, as usual/, denotes the

null hypothesis.



Let o be a permutation of/, and P C (). We define new information functions
f7*) by

ff(P)(x) — {fr(a(x)), if r e P,

fr(z), otherwise

The resulting information systeti, permutes the values within thé-rows ac-
cording too, while leaving thel)—columns constant. We letQ — o(P)) be the
approximation quality of the prediction ef( P) by Q in Z,,.

Given arulel) — P, we use the permutation distributi¢n(Q) — o(P)) : 0 € £}
to evaluate the strength of the prediction— P. The valuep(y(Q — P)|Hy)
measures the extremeness of the observed approximation quality and it is defined

by

1@ = o(P) 2 4(Q = P) : s € T}
o]

(5) p(¥(Q — P)[Hy) :

This is the number of all permutationsof U for which the approximation quality
v(Q — o(P)) is at least as large as the original one, normalized by the number of
all permutations. Ip(y(Q — P)|H,) is low, traditionally below 5%, then the rule

@ — P is deemed significant.

The following shows that the filtration procedure does not decrease the statistical
significance of a rule:

Proposition 4 Let@) — P, andQ* be as defined just before Lemma 3. Then

p(v(Q — P)|Hy) > p(v(Q" — P)|Hop).

PROOF. First, we observe that because attribute values are identified in the the
filtration process, each class & is a union of classes dfy. Thus, given any

R C Q, the rule@Q — R will have at least as many deterministic case®éas— R.

It follows thatv(Q — R) > v(Q* — R). Thus, for everyr € %, if v(Q* —
o(P)) > v(Q* — P), then we have

1Q = a(P)) 2v(Q" — a(P)) 27(Q" = P) =~(Q — P),

the latter by Lemma 3. Hence, the numerator of the right hand side of (B) fer
Pis at least as large as that i@t — P, whence the conclusion follows.O
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7 An application with an empty core

Teghem and Charlet [18] search for premonitory factors of earthquakes by empha-
sizing gas geochemistry, measured over 155 days. The independent attributes are
radon concentration and other measures of climatic factors, the decision attribute is
the seismic activity, measured on the Richter scale, see Table 7.

The core with respect to the decision attribute is empty, and if we consult the liter-
ature on rough set analysis we get the advice that

... Nondeterminism is particularly strong if the core knowledge is void. Hence
nondeterminism introduces synonymy to the knowledge, which in some cases
may be a drawback [13], p.38.

There are no tools within rough set analysis to proceed in this situation, and some-
times questionable procedures like counting of the appearance of attributes within
rule reducts are applied to cope with this problem [18].

Because it is likely that the joint granularity of the attributes is too fine for a sig-
nificant description of the decision attribute, the application of the data filtering
procedure described in Section 5 suggests a way to improve the measurement of
the attributes.

In the example of Table 7, one rule reduct of the decision attribute consists of the
attributes

RADON 11, RaDON 21, RADON 32, RADON 42, RADON 52, RADON 62,
where Radon XY means
Yth Radon measure at location X.

The significance analysis tells us that the chance to obtain the rule randomly is
close to 100%, and thus there is no evidence that the deterministic rule

RADON 11, RADON 21, RADON 32, RADON 42, RADON 52, RADON 62 = SEISMIC
ACTIVITY

is not due to chance.

The method of local reducts described in Section 5 shows that some variables can
be recoded without loss of information by the following transformations:

— Radon 11 should be filtered 9, 4,5} — {5},

11



— Radon 21 should be filtered Ky, 2} — {1},
— Radon 32 should be filtered By, 5} — {5},
— Radon 62 should be filtered By, 4} — {1}.

The significance test of 400 simulations with the recoded data shows that the chance
to obtain the rule at random is 0.25%, thus, we can assume that the recoded rule is
significant.

8 Conclusions

We offer a technique of filtering attributes within rough set data analysis which has

only marginal computational costs — in comparison to the standard procedures (like
reduct searching) of RSDA — and which improves the strength of the results — i.e.

the statistical significance of the rules — remarkably.

The technique can be applied as a cheap standard algorithm if the decision attributes
P are fixed, and we have implemented the proposed procedure in GROBIAN, our
engine for rough set data analysis [6]. Filtering leads to a conglomeration of equiv-
alence classes which does not change the structure and the precision of the predic-
tion.

If desired, the conglomeration process can be made to respect an ordinal structure
of the attributes, by performing the union of equivalence classes only with classes
which cannot be separated by “intermediate” classes. E.g. the elements 1 and 5
of Radon 32 would not be conglomerated, because they were separated by other
measures (2, 3 and 4), whereas the conglomerations within Radon 11 and Radon
12 can be done, because the order structure of the value sets is not damaged by the
procedure. More about rough set procedures which respect ordinal information of
data values can be found in [4].
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Table 1

The sample information system

T|H 4 A
ol H W <
El N <& « W
o1& § & &
T © ©o o o
Ol M N d ™M
Eld m» N ™M
> 8§ § & §

Table 2

The binarized syste

b2 P3 P4 D5

b1

mip Mz M3 My Mg

I

T2

T3

Tq

Ts

Te

T

g

Table 3

The recoded example of Table 1

0Ol1|1

1

0Ol1|1

1

U m|p|H

Ts

Te

T

g

0/0]|0
0/0]|0
0/0]|0
0/0]|0

U mi|p|H

I

T2

T3

Tq
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Table 4

The system{ZP)*
Uilmi mg m3 ma |p1 p2 p3 pas || H
1 1 0 0 0Oj]0 O 1 o0]0O0
o || O 0 1 o]0 1 0 o0]0O0
3| O 1 0 oj1 0 O oO0]O0
xqg | O 0 1 Oj]0 O 1 o0]0O0
x5 | O 1 0 0Oj]0 O O 1|12
zg || O 0 0 111 0 0 0|1
7| 1 0 0 0Oj]0 O O 1|12
xzg || O 0 0 110 0 O 1|1
Table 5
Filtered binary system
Ul mi mg mg mys|p1 p2s pas | H
1 1 0 0 0|0 1 OO
o || O 0 1 0|0 1 OO
3 || O 1 0 o]1 O OO
g || O 0 1 0|0 1 OO
x5 || O 1 0 0|0 O 112
g 0 0 0 1 1 0 0 |1
7 || 1 0 0 0|0 O 112
xzg || O 0 0 110 O 1)1
Table 6
Filtered binary reducts
1| {m1, ma, m3, pas}
2| {ma,p1,ps5}
3| {ma2,pa3,pa5}
4| {ma,p1,p2s}
5| {mus,p1,p23}
6 {mas, pas}
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Table 7

Earthquake system attributes

No ATTRIBUTE No ATTRIBUTE

0 | 1st Radon measure (location 1) || 8 | Atmospheric pressure

1 2nd Radon measure (location 1) || 9 Sun period

2 3rd Radon measure (location 2) || 10 | Air temperature

3 | 4th Radon measure (location 2) || 11 | Relative humidity

4 | 5th Radon measure (location 2) || 12 | Rainfall

5 6th Radon measure (location 2) || 13 | Frost (measured at location 1)
6 7th Radon measure (location 2) || 14 | Frost (measured at location 2)
7 8th Radon measure (location 2) || 15 | Seismic activity

17




