
Statistical Evaluation of Rough Set Dependency Analysis

Ivo Düntsch1

School of Information and Software Engineering

University of Ulster

Newtownabbey, BT 37 0QB, N.Ireland

I.Duentsch@ulst.ac.uk

Günther Gediga1

FB Psychologie / Methodenlehre

Universität Osnabrück

49069 Osnabrück, Germany

gg@Luce.Psycho.Uni-Osnabrueck.DE

and

Institut für semantische Informationsverarbeitung

Universität Osnabrück

December 12, 1996

1Equal authorship implied



Summary

Rough set data analysis (RSDA) has recently become a frequently studied symbolic method in data

mining. Among other things, it is being used for the extraction of rules from databases; it is, however,

not clear from within the methods of rough set analysis, whether the extracted rules are valid.

In this paper, we suggest to enhance RSDA by two simple statistical procedures, both based on ran-

domization techniques, to evaluate the validity of prediction based on the approximation quality of

attributes of rough set dependency analysis. The first procedure tests the casualness of a prediction

to ensure that the prediction is not based on only a few (casual) observations. The second procedure

tests the conditional casualness of an attribute within a prediction rule.

The procedures are applied to three data sets, originally published in the context of rough set analysis.

We argue that several claims of these analyses need to be modified because of lacking validity, and

that other possibly significant results were overlooked.
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1 Introduction

Rough set analysis, an emerging technology in artificial intelligence (Pawlak et al. (1995)), has been

compared with statistical models, see for example Wong et al. (1986), Krusi´nska et al. (1992a) or

Krusińska et al. (1992b). One area of application of rough set theory is the extraction of rules from

databases; these rules then are sometimes claimed to be useful for future decision making or prediction

of events. However, if such a rule is based on only a few observations, its usefulness for prediction is

arguable (see also Krusi´nska et al. (1992a), p 253 in this context).

The aim of this paper is to employ statistical methods which are compatible with the rough set phi-

losophy to evaluate the “prediction quality” of rough set dependency analysis. The methods will be

applied to three different data sets:

• The first set was published in Pawlak et al. (1986) and Słowi´nski & Słowiński (1990). It utilizes

rough set analysis to describe patients after highly selective vagotomy (HSV) for duodenal ulcer.

The statistical validity of the conclusions will be discussed.

• The second example is the discussion of earthquake data published by Teghem & Charlet

(1992). The main reason why we use this example is that it demonstrates the applicability of

our approach in the situation when the prediction success is perfect in terms of rough analysis.

• The third example is used by Teghem & Benjelloun (1992) to compare statistical and rough set

methods. We show how statistical methodswithin rough set analysis highlight some of their

results in a different way.

2 Rough set data analysis

A major area of application of rough set theory is the study of dependencies among attributes of

information systems. Aninformation systemS = 〈U, Ω, Vq, f〉q∈Ω consists of

1. A setU of objects,

2. A finite setΩ of attributes,

3. For eachq ∈ Ω a setVq of attribute values,

4. An information functionf : U × Ω → V
def=

⋃
q∈Q Vq with f(x, q) ∈ Vq for all x ∈ U, q ∈ Ω.

We think of the descriptorf(x, q) as the value which objectx takes at attributeq.

With eachQ ⊆ Ω we associate an equivalence relationθQ onU by

x ≡ y (θQ) def⇐⇒ f(x, q) = f(y, q) for all q ∈ Q.

If x ∈ U , thenθQx is the equivalence class ofθQ containingx.
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Intuitively, x ≡ y (θQ) if the objectsx andy are indiscernible with respect to the values of their

attributes from Q. IfX ⊆ U , thenthe lower approximation ofX byQ

XθQ
=

⋃
{θQx : θQx ⊆ X}

is the set of all correctly classified elements ofX with respect toθQ, i.e. with the information available

from the attributes given inQ.

Suppose thatP, Q ⊆ Ω. We say thatP is dependent on Q– written asQ → P – if every class ofθP

is a union of classes ofθQ. In other words, the classification ofU induced byθP can be expressed by

the classification induced byθQ.

In order to simplify notation we shall in the sequel usually writeQ → p instead ofQ → {p} andθp

instead ofθ{p}.

Each dependencyQ → P leads to a set of rules as follows: Suppose thatQ
def= {q0, . . . , qn}, and

P
def= {p0, . . . , pk}. For each set{t0, . . . , tn} whereti ∈ Vqi there is a uniquely determined set

{s0, . . . , sk} with si ∈ Vpi such that

(∀x ∈ U)[f(x, q0) = t0 ∧ · · · ∧ f(x, qn) = tn) ⇒ (f(x, p0) = s0 ∧ · · · ∧ f(x, pk) = sk)].(2.1)

Of particular interest in rough set dependency theory are those setsQ which use the least number of

attributes, and still haveQ → P . A set with this property called aminimal determining set forP . In

other words, a setQ is minimal determining forP , if Q → P , andR 6→ P for all R ( Q.

If suchQ is a subset ofP we callQ a reduct ofP . It is not hard to see, that eachP ⊆ Ω has a reduct,

though this need not be unique. The intersection of all reducts ofP is called thecore ofP . UnlessP

has only one reduct, the core ofP is not itself a reduct.

For eachR ⊆ Ω letPR be the partition ofU induced byθR. Define

γQ(P ) =

∑
X∈PP

|XθQ
|

|U | .(2.2)

γQ(P ) is the relative frequency of the number of correctlyQ–classified elements with respect to

the partition induced byP . It is usually interpreted in rough set analysis as a measurement of the

prediction success of a set of inference rules based on value combinations of Q and value combinations

of P of the form given in (2.1). The prediction success is perfect, ifγQ(P ) = 1; in this case,Q → P .

Suppose thatQ is a reduct ofP , so thatQ → P , andQ \ {q} 6→ P for any q ∈ Q. In rough

set theory, the impact of attributeq on the fact thatQ → P is usually measured by the drop of the

approximation functionγ from 1 to γQ\{q}(P ): The larger the difference, the more important one

regards the contribution ofq. We shall show below that this interpretation needs to be taken with care

in some cases, and additional statistical evidence may be needed.
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3 Casual rules and randomization analysis

3.1 Casual dependencies

In the sequel we consider the case that a ruleQ → P was givenbeforeperforming the data analysis,

and not obtained by optimizing the quality of approximation. The latter needs additional treatment

and will be discussed briefly in Section 3.5.

Suppose thatθQ is the identity relationidU on U . Then,θQ ⊆ θP for all P ⊆ Ω, i.e. Q → P for

all P ⊆ Ω. Furthermore, each class ofθQ consists of exactly one element, and therefore, any rule

Q → P is based on exactly one observation. We call such a ruledeterministic casual.

If a rule is not deterministic casual, it nevertheless may be based on a few observations only, and thus,

its prediction quality could be limited; such rules may be calledcasual. Therefore, the need arises for

a statistical procedure which tests the casualness of a rule based on mechanisms of rough set analysis.

Assume that the information system is the realization of a random process in which the attribute values

of Q andP are realized independently of each other. If no additional information is present, it may be

assumed that the attribute value combinations withinQ andP are fixed and the matching of theQ, P

– combinations is drawn at random.

Let σ be a permutation ofU , andQ ⊆ Ω. We define a new information functionfσ(Q) by

fσ(Q)(x, r) def=




f(σ(x), r)), if r ∈ Q,

f(x, r), otherwise,

and letγσ(Q)(P ) be the approximation of the prediction ofP by Q in the new information system.

Note that the structure of the equivalence relationθσ(Q) determined byQ in the revised system is the

same as that of the originalθQ. In other words, there is a bijective mapping

τ : {θσ(Q)x : x ∈ U} → {θQx : x ∈ U}
which preserves the cardinality of the classes. In particular, ifθQ is the identity onU , so isθσ(Q). It

follows that for a ruleQ → p with θQ = idU , we haveγσ(Q)(p) = 1 as well for all permutationsσ of

U .

The distribution of the prediction success is given by the set

RP,Q
def= {γσ(Q)(P ) : σ a permutation ofU}.

Let H be the null hypothesis; we have to estimate the position of the observed approximation quality

γobs
def= γQ(P ) in the setRP,Q, i.e. to estimate the probabilityp(γR ≥ γobs|H). Standard ran-

domization techniques – for example Manly (1991), Chapter 1 – can now be applied to estimate this

probability.

If p(γR ≥ γobs|H) is low – conventionally in the upper 5% region –, the assumption of randomness

can be rejected, otherwise, if

p(γR ≥ γobs|H) > 0.05,

we call the rule (random)casual.
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Example 1. Consider the following information system:

U p q d

1 0 0 0

2 0 1 1

3 1 0 2

The rule{p, q} → d is perfect, sinceγ{p,q}(d) = 1.0. Furthermore, the rule is deterministic casual,

because every instance is based on a single observation only.

Now suppose that we have collected three additional observations:

U p q d

1 0 0 0

1’ 0 0 0

2 0 1 1

2’ 0 1 1

3 1 0 2

3’ 1 0 2

To decide whether the given rule is casual under the statistical assumption, we have to consider all

720 possible rules{σ(p), σ(q)} → d and their approximation qualities. The distribution of the ap-

proximation qualities of the 720 possible matching rules is given in Table 1.

Table 1: RESULTS OF RANDOMIZATION ANALYSIS; 6 OBSERV.

γR Number of cases p̂(γR ≥ γobs|H) Example ofσ

1.00 48 0.067 1, 1′, 2, 2′, 3, 3′

0.33 288 0.467 1, 1′, 2, 3, 2′, 3′

0.00 384 1.000 1, 2, 2′, 3, 1′, 3′

Given the 6–observations example, the probability of obtaining a perfect approximation ofd by {p, q}
under the assumption of random matching, is 0.067 which is by far smaller than in the 3–observations

example, but not convincing enough, using conventionalα = 0.05, to decide that the rule is suffi-

ciently significant to be not casual. 2

A problem similar to casualness of attributes, namely, thereliability of rules, was addressed by

Krusińska et al. (1992a). The authors define an index which they callstrengthof a rule by count-

ing the number of objects a rule refers to. It was argued that strength of a rule is connected with

the possibility that such a rule will be observable in a population (Krusi´nska et al. (1992a), p. 253).

Applying the randomization arguments above, it is easy to see that there are situations in which the

relation ”lower strength is monotone related to higher randomness” does not hold, as the following

example demonstrates:
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U p q

1 0 a

2 1 b

3 1 b

4 2 c

5 2 c

The strength of the rule

(∀x ∈ U)[f(x, p) = 0 ⇒ f(x, q) = a](3.1)

is smaller than the strength of any other rule. Looking at all possible randomized predictionsp → q,

we observe that there is only 1 (out of 120) possibilities in whichf(x, q) = a will be predicted by

an element ofp. Considering the other rules, we observe that there are, for example, 4 possibilities in

whichb will be predicted perfectly by a rule at random. Therefore, although the rule (3.1) has a lower

strength than

(∀x ∈ U)[f(x, p) = 1 ⇒ f(x, q) = b],(3.2)

in this situation, rule (3.1) is not as likely to be produced at random as rule (3.2)

3.2 How the randomization procedure works

The proposed randomization test procedure is one way to model errors in terms of a statistical ap-

proach. We neither want to reiterate a general discussion of choosing randomization over other tech-

niques (or vice versa), nor look at the different views of the world held by Fisherian and Neyman-

Pearson statisticians (see e.g. Edgington, 1987, Manly, 1991, Efron & Tibshirani, 1993), but we

should like to put forward several arguments which provide justification for the proposed randomiza-

tion procedure of testing the casualness of a rough set rule system.

Randomization is a statistical technique which does not require a representative sampling from a

population which is a theoretical generalization of the sample under study, because the randomization

uses only information within the given sample. The method is well in accord with the philosophy

behind RSDA and, indeed, soft computing, whose motto is

LET THE DATA SPEAK FOR THEMSELVES.

This aspect is in contrast to most other statistical techniques. Even the bootstrap technique (discussed

in the rough set context in Tsumoto & Tanaka, 1996) needs some parametric assumptions, because

one has to suppose that the percentages of the observed equivalence classes are suitable estimators of

the latent probabilities of the equivalence classes in the population.

Because our approach is aimed to test the casualness of a rule system – and assume for a moment that

this assumption really holds –, the assumption of representativeness is a problem of any analysis in

most real life data bases. The reason for this is the huge state complexity of the space of possible rules,
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Table 2: STATE COMPLEXITY OF INFORMATION SYSTEMS

WITH A MODERATE NUMBER OF ATTRIBUTES

Number of attributes
Number of

10 20 30
attribute values

log10 (states)

2 3.01 6.02 9.03

3 4.77 9.54 14.31

4 6.02 12.04 18.06

5 6.99 13.98 20.97

even when there are only a few number of attributes (Table 2). We observe that any real life data base

contains only few data with respect to the state complexity. Suppose that we sample 100 observations,

and use 10 attributes with four different values each. We observe empirical casualness with 100

different equivalence classes witĥπ = 0.01 per class. If there is no structure at all within the data,

the probability of observing any class isπ = 0.000001. Given the small empirical basis, we cannot

decide whether̂π = 0.01 is near the true valueπ or not. We need additional modeling assumption to

narrow the huge uncertainty interval[0.000001, 0.01]. Because randomization techniques do not need

the assumption of representativeness, we do not have the problem of modeling the sampling process

and restrictions within the data.

In order to show that the randomization procedure really works – and has a reasonable power, if we

know the dependency structure of the attributes –, we have done a small scale simulation study. We

assume nine equivalence classes inθQ and three equivalence classes inθP . There are three rules

q1 → p1, q2 → p2, q3 → p3, which are assumed to hold without any error. Any observation within

the other six classes ofθQ was randomly assigned to one of the three classes ofθP . The percentage

of the three rules – which is the true value of the approximation qualityγ – is varied by

γ

0.0 0.1 0.2 0.3

We have performed 100 simulations usingN = 10, 20, . . . , 70 observations, and 1000 simulated

randomizations within each simulated trial.

Figure 1 shows the problem of granularity: GivenN = 10 observations and a true value ofγ = 0.0,

the expectation of̂γ is about0.32; the granularity overshoot vanishes at aboutN = 40.

Figure 2 presents the test characteristic of the randomization tests using the conventionalα-risk of

5%. Given no effect (γ = 0.0), we see that the recoveredα of the randomization procedure has its

maximum atN = 30 with α = 1 − β = 0.05. This conservative behaviour of the test is due to

the following: If the sample size is very low, the number of possibleγ̂-estimations is limited. Since

any randomized̂γ-value which is equal to the observed approximation quality counts for randomness,

the hypothesis “casualness” will get a bit more probability then it should. If the sample size gets

larger andγ = 0.0 holds, it will be very unlikely that an observation shows an approximation quality
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Figure 1: EXPECTATION OF APPROXIMATION QUALITY,
GIVEN SAMPLE SIZE AND γ
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Figure 2: TEST CHARACTERISTIC OF THE RANDOMIZATION PROCEDURE(α = 5%)
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γ̂ > 0.0 and becausêγ = 0.0 is the minimal empirical outcome, the power of the test will approach 0

for larger sample sizes.

Although the behaviour of the test characteristic givenγ = 0.0 is somewhat peculiar, the power curves
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of an effectγ > 0.0 show that the randomization test has a reasonable power – at least in the chosen

situation.

Inspecting the power curves we observe that an effect of 30% stable rules – i.e.γ = 0.3 – will result

in a steep power curve.

Obviously, 30% is not 100% and therefore, it should be noted that the proposed procedure is an

omnibus type test, and a significant result maynot be interpreted in the sense that the given rule

system is consistent, but that there (mutually) exists a subset of consistent rules within the given rule

system. In other words: A significant test result is a minimal requirement for a rule system!

3.3 Computational considerations

It is well known that randomization is a rather expensive procedure, and one might have objections

against this technique because of its cost in real life applications. However, we think that a simulation

of 1000 randomized(σ(Q), P )-assignments will be good enough to get an impression of the probabil-

ity of casualness in the given sample. Iff(N ) is the time complexity for performing the computation

of γ, the time complexity of the simulation based randomization procedure is1000f(N ). This is not

too bad, if we compare this time complexity with the one of finding a reduct in a set of |Q| attributes,

which is known to be NP-hard in the attribute number.

Let g(|Q|) be the number of evaluated sets of attributes for searching rough reducts of the typeR → P

(R ⊆ Q), we needg(|Q|) ·f(N ) computations of approximation qualitiesγR(P ); R ⊆ Q. Therefore,

the cost of the simulation based randomization procedure is well within the complexity of the whole

rough set approach. If randomization is too costly for a data set, RSDA itself will not be applicable in

this case.

It is an additional task to investigate the possibilities to speed up the computation of the significance

of a given rule system. Some simple short cuts such as a check whether the entropy of theQ partition

is nearlog2(N ) may avoid superfluous computation. Furthermore, simple and less costly procedures

can be used to transform the raw data into a two–dimensional contingency table of cross-classifying

θQ by θP . Simulations – or even exact methods analogous to those of Metha & Hilton (1993) – can

be done more efficiently using the computed contingency table. For our re-analysis of the published

data sets below it was not necessary to speed up the computations.

3.4 Conditional casual attributes

We call an attributeq within a minimal determining setQ for P conditional casual, if there are only

a few observation in which the attributeq is needed to predictP . This will be made concise below.

Example 2. Consider the following information system:
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U q1 q2 p U q1 q2 p

1 0 0 0 5 1 0 1

2 0 2 0 6 1 2 1

3 0 2 0 7 1 2 1

4 1 1 0 8 0 1 1

The rule{q1, q2} → p is perfect, and we also haveγq1(p) = γq2(p) = 0. However, the influences of

the attributesq1 andq2 differ: Whereas attributeq1 is essential to predictp, the attributeq2 is needed

only to explain the two additional elements4 and8. 2

As in the preceding section, our statistical approach is to compare the actualγQ(P ) with the results of

a random system: For each permutationσ of U and eachq ∈ Q we obtain a new information function

fσ,q by setting

fσ,r(x) def=




f(σ(x), r), if r = q,

f(x, r), otherwise.

The resulting approximation quality ofP by Q is denoted byγQ,σ(q)(P ), and the distribution of the

prediction success is given by the set

RP,Q,q
def= {γQ,σ(q)(P ) : σ a permutation ofU}.

As above, if the position ofγQ,σ(q)(P ) is in the upper 5% region, the assumption of (random) condi-

tional casualness can be rejected, otherwise we will call the attributeconditional casual withinQ, or

justconditional casual, if Q is understood.

In rough set analysis, the decline of the approximation quality when omitting one attribute is usually

used to determine whether an attribute within a minimal determining set is of high value for the

prediction. This approach does not take into account that the decline of approximation quality may be

due to chance.

Example 3. The following example shows that, depending on the nature of an attribute, statistical

evaluation leads to different expectations of the increase of approximation quality which is not visible

under ordinary rough analysis methods.

U q r1 r2 r3 p U q r1 r2 r3 p

1 0 1 1 1 a 5 1 5 5 3 c

2 0 2 1 1 a 6 1 6 4 3 c

3 0 3 3 3 b 7 2 7 7 3 d

4 0 4 3 3 b 8 2 8 7 3 d

The prediction ruleq → p has the approximation qualityγq(p) = 0.5. Assume that an additional

attributer is conceptualized in three different ways:

• A fine grained measurer1 using 8 categories,
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• A medium grained descriptionr2 using 4 categories.

• A coarse descriptionr3 using 2 categories, and

For 1 ≤ i ≤ 3 we haveγ{q,ri}(p) = 1, so that each of these approximations is perfect. If we regard

γq(p) = 0.5 as the value of the decline of the approximation quality when leaving out attributeri

in the prediction ofp, we have a situation in which standard rough set dependency analysis does not

distinguish between the alternate descriptions with respect to the additional attributeri, 1 ≤ i ≤ 3.

If we consider the expectationE[γq,σ(ri)(p)], we observe that

E[γq,σ(r1)(p)] = 1,

E[γq,σ(r2)(p)] = 0.88,

E[γq,σ(r3)(p)] = 0.624.

The statistical approach offers additional information to evaluate the increase of the approximation

quality, if we add one of theri attributes to the left side of the prediction rules.

• Any attributes with the same frequency distribution as the valuesf(x, r1), x ∈ U , is expected

to have approximation qualityγ{q,s}(p) = 1. Therefore we cannot trust the rules derived from

the description{q, r1} → p, because the attributer1 is exchangeable with any random generated

attributes = σ(r1).

• The expectation of a random generated rule system with an attributes = σ(r3) is onlyγ{q,s}(p) =
0.624, and thus by far smaller than the observed valueγ{q,r3}(p) = 1.

• The result of the 4 category example is in between.

Whereas the statistical evaluation of the additional predictive power of the three chosen attribute

differs, the analysis of the decline of the approximation quality tells us nothingabout these differences.

2

Therefore, rather than using the decline of approximation quality as a global measure of influence,

it is more appropriate to compare the influence of an attribute using the proposed statistical testing

procedure.

3.5 Cross validation of learned dependencies

If rough set analysis is used to learn the best subset ofΩ to determineP , a simple randomization

procedure is not sufficient, because it does not reflect the optimization of the learning procedure.

A simple approach is to splitU into a learning subset and a test subset of objects. Within the learning

subset, the testing procedures may be used as a guide for including or eliminating attributes. Within

the test subset the same procedure can be used to validate the chosen attributes.

If the test procedure shows a significant result, the prediction using the attributes from the learning set

is validated, because the attributes show predictive power in another independent set of objects. If the
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test procedure does not show a significant result, there are too few rules which can be used to predict

the decision attributes from the learned attributes.

A significant result is a minimal requirement for checking the predictive power of the reductR → P

under study. A significant result should be interpreted as “some of the rules within the rule system

R → P are consistent in the test subset”. Note, that these rules need not be the same as those in the

learning subset! Therefore, a significant result using the test set of objects is not enough to validate

the rules derived from the learned attributes.

To test the stability of rule, we splitU into learning (e.g. the first half of the data set) and test

objects (e.g. the second half of the data set) and use the split as an additional prediction attribute (e.g.

“time”). If the additional attribute is not conditional casual, the learning rules distinguish between

learning and test subset and we need the additional attribute to describe the rules. Therefore, the rules

differ between learning set and test set. If the additional attribute is conditional casual, the hypothesis

that the rules in both sets of objects are identical should be kept. An example of this approach is given

in Chapter 4.1 (Table 5).

4 Reanalysis of sample information systems

4.1 Duodenal ulcer data

All data used in this paper are obtainable fromftp://luce.psycho.uni-osnabrueck.de/

home/roughdat/data.zip , and all calculations are done using the GROBIAN system of Düntsch

et al. (1996) which, in turn, uses some routines from Gwary´s & Sienkiewicz (1993).

One of the first rough set analyses published was the study of Pawlak et al. (1986) which describes

patients after highly selective vagotomy (HSV) for duodenal ulcer. An enhanced data set was used in

Słowiński & Słowiński (1990) and Słowi´nski (1992a), and this data set will be used in the sequel.

The attribute “Visick grading” (Attr. 12) determines a partition of the set of patients. Pawlak et al.

(1986) obtained – using rough set analysis – that the attribute setR, consisting of

3: Duration of disease

4: Complication

5: Basic HCI concentration

6: Basic Vol. of gastric juice

9: Stimulated HCI concentration

10: Stimulated Vol. of gastric juice

suffices to predict attribute 12 (“Visick grading”). Based on the decline of the approximation quality

it was speculated that the attribute sets

A
def= {4, 5, 6, 9, 10}, B def= {3, 4, 6, 9, 10}, or C

def= {3, 4, 5, 6, 10}
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are candidates for future research.

The results of the randomization based on 1000 simulations for each test are given in Table 3. Col. 1

shows the attributes under consideration, col. 2 the observed approximation qualityγ of this set, col.

3 the estimated position ofγ in the distribution of the random matching assumption, and col. 4 the

estimated 5% cutpoint in the distribution of gamma assuming random matching.

Table 3: REANALYSIS OF THE DUODENAL ULCER DATA, I

Attributes γobs p̂(γR ≥ γobs|H) γR(α = 5%) interpretation

3,4,5,6,9,10 0.795 0.013 0.770 not casual

·,4,5,6,9,10 (A) 0.590 0.153 0.623 casual

3,·,5,6,9,10 0.516 0.199 0.557 casual

3,4,·,6,9,10 (B) 0.680 0.018 0.656 not casual

3,4,5,·,9,10 0.549 0.084 0.556 casual

3,4,5,6,·,10 (*) 0.631 0.008 0.590 not casual

3,4,5,6,9,· (C) 0.648 0.011 0.607 not casual

We observe that with this data set, the prediction success of the attribute set{3, 4, 5, 6, 9, 10} is sat-

isfactory. The proposed attribute sets B and C are not casual, whereas the proposed attribute set A is

casual. Furthermore, one interesting attribute set (indexed by∗) has been overlooked.

The analysis of attributes withinR (Table 4) are checked using the technique of determining the

conditional casualness. The underlined attribute in col. 1 is the attribute under study.

Table 4: REANALYSIS OF THE DUODENAL ULCER DATA, II

Attribute. decline ofγobs overallγobs p̂(γR ≥ γobs|H) γR(α = 5%) interpretation

3,4,5,6,9,10 0.590 0.795 0.182 0.828 cond. casual

3,4,5,6,9,10 0.516 0.795 0.099 0.811 cond. casual
3,4,5,6,9,10 0.680 0.795 0.394 0.844 cond. casual
3,4,5,6,9,10 0.549 0.795 0.107 0.811 cond. casual

3,4,5,6,9,10 0.631 0.795 0.127 0.811 cond. casual
3,4,5,6,9,10 0.648 0.795 0.310 0.844 cond. casual

The astonishing result: All attributes are conditional casual withinR. This means that there are always

only a few of the 122 observations which can be predicted additionally by introducing the attribute

under study into the set. If we doubled all observations and analysed the set of 244 objects, no attribute

would be conditional casual.

Thus, one could argue that the number of observations in the duodenal ulcer information system is too

small to determine influences of the attributes withinR.
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The attribute set discussed in Pawlak et al. (1986) was based on a reduct searching procedure. In order

to discuss the cross validation procedure, we split the data set into 2 subsets containing 61 cases each.

The proportion of the categories of the dependent attributes (Attr. 12) are matched in both subsets;

the lower subject codings are gathered in the learning set, the higher ones in the test set. Tab. 5 shows

the result of the cross validation procedure.

In the learning set, the attributes 3, 4, 5, and 6 show a quite reasonable result (s. Tab. 5). This

result cannot be replicated in the test set. Putting learning data set and test data set together shows a

significant influence of the data set coding (“time”; 1 = first half of the data set; 2 = second half of the

data set).

The random matching analysis of the attribute sets shows that the overall success ofR is satisfactory

and that some – but not all – speculations about reducingR are valid. Furthermore, the result sug-

gests a reduction of the number of attributes withinR, because all attributes are conditional casual.

Additionally, the cross–validation procedure shows a huge internal heterogeneity of the data set.

4.2 Earthquake data

In Teghem & Benjelloun (1992), the authors search for premonitory factors for earthquakes by em-

phasizing gas geochemistry. The partition attribute (attribute 16) was the seismic activity on 155 days

measured on the Richter scale. The other attributes were radon concentration measured at 8 different

locations (attributes 1-8) and 7 measures of climatic factors (attributes 9-15). A problem with the

information system was that it has an empty core with respect to attribute 16, and that an evaluation

of some reducts turned out to be difficult.

The statistical evaluation of some of the information systems proposed by Teghem & Benjelloun

(1992) gives us additional insights (Tab. 6).

We see that the proposed set{1, 2, 3, 6, 12} is casual, although it is a reduct (and thus has perfect ap-

proximation quality), and that{1, 4, 6} is casual, too. Based on the results of our statistical evaluation

procedure, the most promising model discussed by the authors seems to be the reduct{1, 2, 6, 8}, or,

if cheaper measurement equipment is preferred, a choice of the measurement locations{1, 2}.

4.3 Rough set analysis of Fisher’s Iris Data

Teghem & Charlet (1992) use the famous Iris data first published by Fisher (1936) to show the ap-

plicability of rough set dependency analysis for problems normally treated by discriminant analysis.

The setU consists of 150 flowers characterized by five attributes namely,

1. Petal length,

2. Petal width,

3. Sepal length,

4. Sepal width, and

13



Table 5: REANALYSIS OF THE DUODENAL ULCER DATA, III

Learning Set

Variables in system γobs p̂(γR ≥ γobs|H)
3,4,5,6 0.82 0.01

3,4,5,6 0.32 0.02

3,4,5,6 0.30 0.01

3,4,5,6 0.59 0.05

3,4,5,6 0.43 0.17

Test Set

Variables in system γobs p̂(γR ≥ γobs|H)
3,4,5,6 0.39 0.46

3,4,5,6 0.31 0.55

3,4,5,6 0.21 0.63

3,4,5,6 0.21 0.35

3,4,5,6 0.34 0.59

Learning & Test Set

Variables in system γobs p̂(γR ≥ γobs|H)
3,4,5,6,time 0.61 0.01

3,4,5,6,time 0.32 0.03

3,4,5,6,time 0.25 0.03

3,4,5,6,time 0.40 0.05

3,4,5,6,time 0.39 0.16

3,4,5,6,time 0.43 0.05

5. A partition attribute.

Table 7 validates the argument that only the attribute set{3, 4} should be used to predict the partition

attribute.

5 Conclusion

Gathering evidence in procedures of Artificial Intelligence should not be based upon casual observa-

tions. Our approach shows how – in principle – a system using the rough set dependency analysis will

defend itself against randomness.

The reanalysis of three published data sets shows that there is an urgent need for such a technique:

Parts of the claimed results using the first two data sets are invalidated, some promising dependencies
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Table 6: REANALYSIS OF THE EARTHQUAKE DATA

Variables in system γobs p̂(γR ≥ γobs|H)
model: 1,2 0.83 0.01

1,2 0.46 0.01

1, 2 0.56 0.01

model: 1,4,6 0.85 0.63

model: 1,2,4,5 1.00 0.02

1,2,4,5 0.95 0.33

1,2,4,5 0.86 0.02

1,2,4,5 0.95 0.26

1,2,4,5 0.92 0.08

model: 1,2,4,6 1.00 0.01

1,2,4,6 0.90 0.10

1,2,4,6 0.85 0.01

1,2,4,6 0.93 0.11

1,2,4,6 0.92 0.08

model: 1,2,6,8 1.00 0.01

1,2,6,8 0.92 0.09

1,2,6,8 0.88 0.05

1,2,6,8 0.93 0.06

1,2,6,8 0.92 0.09

model: 1,2,3,6,12 1.00 0.18

are overlooked and, as we show using data of Study 1, our proposed cross–validation technique offers

a new horizon for the interpretation. Concerning Study 3, the conclusions of the authors are validated.

As we demonstrate above in Study 2, the proposed statistical evaluation of rough set dependencies

helps even in an empty core situation, but it is also applicable if many random errors contaminate the

data as in Study 3.
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