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Abstract

For the description of dependencies between a set of independent attributesQ and a dependent at-
tribute p, a soft computing approach such as Rough Set Data Analysis (RSDA) uses only a very
simple data representation model: The set of equivalence classes of feature vectors determined byQ,
andp respectively. Although this model is satisfactory for many applications, there are sometimes
problems to interpret the results, because this type of prediction does not take into account relational
information within the attributes, for example, orderings. We consider the problem what form predic-
tion should take in the “nominal attributes predict an ordinal attribute” situation ((n, o)-prediction),
as well as in the(o, o)-situation. We show how to define rough(n, o)- and(o, o)-prediction and ap-
proximation in terms of relational compatibility, which respects the granularity information given by
the attributes. A running example is presented to demonstrate the result of the three types of data
analysis.

1 Introduction

Even though most data analyzed in psychological investigations are ordinal, a succinct methodology to
cope with prediction in case of multiple ordinal variables is still missing, cf. Cliff (1). The frequently used
interval – scale assumptionsupposes that a theoretical constructT (e.g. intelligence) and its measurement
M (e.g. results in an intelligence test) are linearly related. It is astonishing that almost data analysis
procedures (linear regression, factor analysis, analysis of variance etc.) assume that even “established”
psychometric measurements, such as the IQ, are interval scaled. However, one can argue that making this
assumption is a pragmatic decision, because of a missing methodological approach in the ordinal scaling
case.

Even though nominal scaling has been around for some time – see for example Torgerson (4) – it has come
into focus only in the past few years, and it can be developed into an alternative to the classical regression
model. This type of data analysis uses only equivalence type information; in other words, objects are
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Table 1: Contraception data

Country X1 X2 X3 X4 Y
(1) Lesotho 3.9 4 73 0 6
(2) Kenya 0.9 4 108 6 9
(3) Peru 2.7 17 367 0 14
(4) Sri Lanka 3.8 20 142 12 22
(5) Indonesia 1.2 9 61 14 25
(6) Thailand 2.1 8 142 20 36
(7) Colombia 2.7 47 284 16 37
(8) Malaysia 1.6 29 313 18 38
(9) Guayana 6.1 20 318 0 42
(10) Jamaica 6.9 8 593 23 44
(11) Jordan 1.4 53 197 0 44
(12) Panama 5.3 50 570 19 59
(13) Costa Rica 4.7 18 464 21 59
(14) Fiji 3.7 15 321 22 60
(15) Korea 4.5 15 188 24 61

Table 2: Recoded data

Country X1 X2 X3 X4 Y
Lesotho 1 0 0 0 6
Kenya 0 0 0 0 9
Peru 1 1 2 0 14
Sri Lanka 1 1 0 1 22
Indonesia 0 0 0 1 25
Thailand 1 0 0 1 36
Colombia 1 2 1 1 37
Malaysia 0 1 2 1 38
Guayana 2 1 2 0 42
Jamaica 2 0 2 2 44
Jordan 0 2 1 0 44
Costa Rica 2 1 2 2 59
Panama 2 2 2 1 59
Fiji 1 1 2 2 60
Korea 2 1 1 2 61

discernible only up to a classification (see Gigerenzer (2), pp 133ff, and Pawlak (3)). Thisnominal scale
approachis very liberal, because any function between a theoretical construct and its measurement which
preserves the classification structure is admissible. We propose in this paper a simple prediction analysis
approach with order – structured data, using the terminology of RSDA developed by Pawlak (3).

To demonstrate the procedures, we will use a data set published by Cliff (1) (Table 1, Table 2). This data
set was used to discuss statistical approaches to ordinal data analysis.
It is aimed to predict the ordinal relation of the countries

• % ever practicing contraception (Y)

from the characteristics

• Average years of education (X1),

• Percent urbanized (X2),

• Gross national product per capita (X3),

• Expenditures on family planning (X4),

As the basis for knowledge representation we use theOBJECT→ ATTRIBUTE relationship, in which each
object can be represented by a vector where each coordinate represents an attribute. More formally, an
information system

I = 〈U, Ω, Vq, fq〉q∈Ω

consists of

1. A finite setU of objects,

2. A finite setΩ of attributes (features),

3. For eachq ∈ Ω
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(a) A setVq of attribute values,

(b) An information functionfq : U → Vq,

cf Pawlak (3).

If Q ⊆ Ω, then we define an equivalence≡Q onU by

x ≡Q
def⇐⇒ (∀q ∈ Q)(fq(x) = fq(y))

If no confusion can arise, we usually identify singletons with the element that they contain.

2 The nominal – nominal case

The simplest dependency is based on the observation that objects inU can only be distinguished up to
their feature vectors. The appropriate classifications are given by the equivalence relations≡Q: Intu-
itively, x ≡Q y if the objectsx andy are indiscernible with respect to the values of their attributes from
Q, and we regard these equivalence relations as nominal scales. A classA of ≡Q is compatible(with ≡p)
if it is a subset of a class of≡p. A deterministic rule in this setting takes the form

(∀z ∈ U)

[∧
i≤m

fqi(z) = tqi ⇒ fp(z) = tQ

]
,

The unionM of all compatible sets can serve as a statistic of the (nominal) prediction success using
deterministic rules. The normalized statistic

γn,n(Q → p) =
|M |
|U |

is called the(n,n) – approximation quality ofp by Q with respect to the nominal scales≡Q and≡p

(nominal, nominal). Ifγn,n(Q → p) = 1, the prediction success is perfect, and in this case we callp
(n,n) – dependent onQ; this is the usual rough set definition. Theγn,n values for our example are given
in Table 3.

3 The nominal – ordinal case

Now, suppose that we have a linear order relation≤p onVp. If X, Y ⊆ Vp, we let

X ≤+
p Y if and only if (∀x ∈ X, y ∈ Y )(x ≤p y).

The question that we ask is the following:

• If A, B are different classes of≡Q, how are their imagesfp(A), fp(B) related in≤+
p ?

We callA, B ∈ KQ compatible, if either

1. fp(A) ≤+ fp(B), or

2. fp(A) ≥+ fp(B).
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Table 3: The approximation values of Table 2

Prediction Set γn,n(Q → p) γn,o(Q → p) Predicted Intervals
X1, X2, X3, X4 1.00 1.00 all elements
X1, X2, X3 0.47 0.60 {[9], [22], [25], [37], [38], [42, 59], [59], [61]}
X1, X2, X4 0.87 0.93 all elements, but 60, and one interval[59, 61]
X1, X3, X4 0.73 0.93 all elements, but 25, and two intervals[22, 36], [59, 61]
X2, X3, X4 0.47 0.87 {[6, 9], [22], [25, 36], [37], [38], [44], [44], [59], [59, 60], [61]}
X1, X2 0.33 0.47 {[6, 36], [37], [38], [42, 61]}
X1, X3 0.27 0.60 {[6, 36], [37], [38], [42, 59], [61]}
X1, X4 0.20 0.60 {[6, 14], [22, 37], [42], [44, 61]}
X2, X3 0.27 0.53 {[6, 36], [37, 44], [59], [61]}
X2, X4 0.13 0.73 {[6, 9], [25, 36], [37, 59], [59, 61]}
X3, X4 0.20 0.73 {[6, 9], [22, 36], [37], [44], [44, 60], [61]}
X1 0.00 0.40 {[6, 60]}
X2 0.00 0.47 {[14, 61]}
X3 0.00 0.53 {[6, 36], [37, 61]}
X4 0.00 0.40 {[22, 59]}

A subsetM of KQ is compatible, if each two different elements are compatible. The (n,o) – approxima-
tion quality (nominal – ordinal) is defined by the

γn,o(Q → p)
def
= max{|

⋃
M |

|U | : M is a compatible subset ofKQ}.

A rule in this system has the form

If A, B ∈ KQ, A 6= B, thenfp(A) ≤+
p fp(B)or fp(A) ≤+

p fp(B).(3.1)

Unlike the previous case (which was essentially unary), the choice of a compatible set with maximum
cardinality is not necessarily unique. In this case, the researcher faces the problem that (s)he has to choose
among different rule systems with the same approximation quality, and thus, other, possibly semantic,
criteria have to be applied.

If γn,o(Q → p) = 1, we callp (n,o) – dependent onQ. In this case, the prediction success is perfect, and
the images of the classes of≡Q overlap at most in their extremal elements.

It is straightforward to see, that for any linear order≤p on Vp we haveγn,n ≤ γn,o, since for each
deterministic classA ∈ KQ, fp(A) is a singleton. In the full paper we consider more general relations
than linear orders, and additional structural properties.

Example: Table 3 shows the results of the(n, n) – analysis and the(n, o) – analysis applied to the data
set given in Table 2. All possible combinations of the attributesX1, X2, X3, X4 are listed to predict the
decision attributep = Y . Because for each∅ 6= Q ⊆ {X1, X2, X3, X4} there is a unique compatible
subset ofKQ with maximum cardinality, we present in the last column the predicted intervals of the
associated compatible set.

As an example, considerQ = {X3}, for which we have the following information:

Class fX3–value min fp max fp

A: Lesotho, Kenya, Sri Lanka, Indonesia, Thailand 0 6 36
B: Colombia, Jordan, Korea 1 37 44
C: Peru, Malaysia, Guayana, Jamaica, Costa Rica, Panama,

Fiji
2 14 61
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The only compatible classes are A and B, and we obtain the rule

If fQ(x) = 0 andfQ(y) = 1, then6 ≤ fp(x) ≤ 36 and37 ≤ fp(y) ≤ 61.

Since|A ∪ B| = 8, we obtainγn,o(X3 → Y ) = 0.53.

The results show thatX3 alone is a fairly good candidate for(n, o) – prediction, because it discriminates
between two (of three) classes; a result which cannot be achieved by using(n, n) – approximation.

If we are content with nearly perfect prediction success, both analyses offer the setX1, X2, X4, but the
(n, o)-prediction offers 2 additional options, namely,{X1, X3, X4} and{X2, X3, X4}.

4 The ordinal – ordinal case

In this section we assume that, in addition to≤p, we are given a (not necessarily linear) order≤Q onKQ.
Our aim is to transport the order≤Q to 〈P(Vp),≤+

p 〉 while at the same time respecting the indiscernibility
relations≡Q and≡p.

If ≤Q arises, for example, from a product of linear orders on the setsVQ, it is important to point out that
a decision has to be made, whichof the possible partial orders shall be investigated. Therefore, one may
have to apply the procedure to more than one case of ordering, if the context of the research so requires.
In the sequel, we suppose that the orders under consideration are fixed.

We callA, B ∈ KQ compatible, if A �Q B impliesfp(A) ≤+
p fp(B). A subset ofKQ is compatible, if

any two different elements are compatible.

As before, the (o,o) – approximation quality is defined by the maximal cardinality of the union of com-
patible sets:

γo,o(Q → p)
def
= max{|

⋃
M |

|U | : M is compatible}.

We now say thatp is (o,o)–dependent onQ (ordinal – ordinal), ifγo,o(Q → p) = 1; Table 4 shows the
(o,o) – dependency values. Whereas the(n, o)-analysis as well as the(n, n)-analysis favor the selection of
the attributes{X1, X2, X4}, the(o, o)-analysis shows the ordinal approximation quality success will not
increase from the approximation quality of the attributes{X2, X4} or {X3, X4}; obviously, the attribute
X1 has no ordinal impact on the dependent attribute.

5 Conclusion

We have presented a methodology to analyze ordered data in the context of an underlying nominal scale
assumption such as rough set data analysis. We have pointed out that there is an urgent need to develop
such methods, because the current practice in data analysis uses interval – scaled strategies, even though
the underpinning of interval – scales is questionable in many applications, and ordering relations seem to
be better candidates in many cases.. Similar to (nominal) rough set data analysis, we define and discuss
the prediction success – called approximation quality – and prediction rules.

There are some – we think minor – drawbacks of this approach. First, even in the simplest setting of
one nominal and one ordinal attribute we observe a dissociation between the approximation quality and
the fixing of a rule system. Further research is necessary to investigate the nature and the impact of
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Table 4: Rough order analysis

Prediction Set γo,o(Q → p) Intervals
1,2,3,4 0.73 {[6], [14], [25], [36], [37], [38], [42], [44], [59], [60], [61]}
1,2,3 0.53 {[6, 36], [38], [44], [44], [42, 59], [59]}
1,2,4 0.73 {[6], [14], [25], [36], [38], [42], [44], [44], [59], [59, 61]}
1,3,4 0.73 {[6], [14], [22, 36], [37], [42], [44], [59], [60], [61]}
2,3,4 0.73 {[6, 9], [14, 42], [25, 36], [37], [44], [59], [59, 60]}
1,2 0.47 {[9, 25], [44], [42, 61]}
1,3 0.53 {[6, 36], [37], [42, 59]}
1,4 0.60 {[6, 14], [22, 37], [42], [44, 61]}
2,3 0.53 {[14, 59], [37, 44], [59]}
2,4 0.73 {[6, 9], [14, 42], [25, 36], [44], [44], [59, 61]}
3,4 0.73 {[6, 9], [14, 42], [22, 36], [37], [44, 60]}
1 0.40 {[6, 60]}
2 0.47 {[14, 61]}
3 0.53 {[6, 36], [37, 61]}
4 0.40 {[22, 59]}

this dissociation. Second, in a pre–processing step, the researcher has to decide which relations are
meaningful in the context. Otherwise, in case of no additional knowledge, (s)he faces a computational
problem: If k ordinal relations are involved in the attribute domains ofQ , then2k−1 different data
analyses are needed.
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