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Abstract 
 
In keeping with the spirit of Lamarckian 
evolution, variations on a simple genetic 
algorithm are compared, in which each 
individual is optimized prior to evaluation. Four 
different optimization techniques in all are 
tested: random hillclimbing, social (memetic) 
exchange, and two techniques using artificial 
neural nets (ANNs). These techniques are tested 
on a set of three sample problems: an instance of 
a minimum-spanning tree problem, an instance 
of a travelling salesman problem, and a problem 
where ANNs are evolved to generate a random 
sequence of bits. The results suggest that in 
general, social exchange provides the best 
performance, consistently outperforming the 
non-optimized genetic algorithm; results for 
other optimization techniques are less 
compelling. 

1 INTRODUCTION 

1.1 LAMARCK’S IDEAS OF EVOLUTION 
By far the most common understanding of evolution 
today is based on the work of Charles Darwin, whose 
ideas have not only shaped the modern science of biology 
but have also influenced computer science, through the 
development of genetic algorithms and similar 
techniques. Darwin’s model of evolution through natural 
selection however is not the only possible model, nor was 
it the first. 
In 1801, a Frenchman by the name of Jean-Baptiste de 
Monet, Chevalier de Lamarck published his own theory 
of evolution (Burkhardt, 1977), almost sixty years before 
Darwin published his famous Origin of Species (Darwin, 
1859). Natural selection did not play a part in Lamarck’s 
theory; rather, plants and animals adapted to their 
environment over the course of their lifetime, and these 
adaptations were passed on directly to their offspring. To 
cite an example from Lamarck (1801) himself: 

The bird attracted by need to the water to find there 
the prey necessary for its existence, spreads the digits 

of its feet when it wishes to strike the water and move 
on the surface. The skin that unites these digits at their 
base thereby acquires the habit of stretching itself. 
Thus, with time, the large membranes uniting the 
digits of ducks, geese, etc. have been formed such as 
we see them today. 
But the bird whose way of life habituates it to perch in 
trees has necessarily the digits of its feet extended and 
shaped in another way. Its claws are elongated, 
sharpened, and curved in a hook to grasp the branches 
on which it often rests. 
 In the same way one may perceive that the bird of the 
shore, which does not at all like to swim, and which 
however needs to draw near to the water to find its 
prey, will be continually exposed to sinking in the 
mid. Wishing to avoid immersing its body in the 
liquid, [it] acquires the habit of stretching and 
elongating its legs. The result of this for the 
generations of these birds that continue to live in this 
manner is that the individuals will find themselves 
elevated as on stilts, on long naked legs... (pp. 13-14) 

While Lamarck’s beliefs lie generally discredited in the 
field of biology (Burkhardt, 1977), one may yet wish to 
revisit his ideas: while Lamarckian evolution is not found 
in nature, it is entirely possible to implement systems 
based on his ideas in software.  

1.2 AN OVERVIEW OF TRADITIONAL 
GENETIC ALGORITHMS 

The Darwinian model of evolution has been used 
successfully to solve a number of search and optimization 
problems using computers (Mitchell, 1996), commonly 
using what is referred to as a “genetic algorithm.” The 
basic operation of a genetic algorithm, or GA, is as 
follows: 
A population of individuals is randomly generated. Each 
individual represents a potential solution to the problem at 
hand: every individual can be evaluated using a “fitness 
function” to determine how well it solves the given 
problem. 
Individuals from the population are chosen for 
reproduction. The individuals are chosen randomly, with 
some sort of bias in favour of individuals who perform 



 

 

well in the fitness evaluation. Using “genetic operators,” 
new individuals are generated which are based in part 
upon the encoding of their “parent” individuals. 
As the simulation runs, the problem “search space” is 
explored in an effort to find an optimal or near-optimal 
solution (Mitchell, 1996). The fact that individuals are 
selected for reproduction in a biased fashion means that 
on the whole, the simulation will spend most of its time 
examining good solutions rather than wasting its time on 
bad ones. 
One of the most important parts of any genetic algorithm 
is the selection mechanism, by which individuals are 
chosen for reproduction. A popular selection mechanism 
is the tournament selection: an arbitrary subset of the total 
population is selected at random; the individual with the 
best score from the fitness function is then chosen for 
reproduction.  
Another important aspect of a GA is the set of genetic 
operators used to produce new individuals. Some of the 
most common operators are: 
•  Crossover—in crossover, two (or possibly more) 

individuals are combined to create a new individual. 
Several variations on crossover exist, which vary 
primarily in terms of how the components from the 
parent individuals are combined. Crossover serves to 
quickly propagate beneficial pieces of an overall 
solution across the larger population, and is usually 
the most-commonly invoked genetic operator. 

•  Mutation—mutation involves randomly modifying 
some part of a parent individual. Mutation serves to 
introduce new potential solutions to the population, 
and also to help delay the onset of convergence—the 
tendency of any GA to breed populations of 
increasingly similar individuals, which makes 
crossover useless and effectively stops evolution. 
Convergence may be problematic if the simulation 
converges before finding an optimal solution. 

•  Reproduction (copying)—reproduction simply copies 
an individual, without change, and inserts the new 
copy into the population. This is useful in order to 
help prevent the loss of particularly good individuals 
in the population. 

Another aspect of GAs are how they handle the updating 
of the population: GAs which replace the entire 
population in a turn-based fashion are called generational; 
this is in contrast with steady-state GAs, which 
continuously replace small parts of the population with 
new individuals. (Mitchell, 1996) 

1.3 A LAMARCKIAN APPROACH TO 
GENETIC ALGORITHMS 

The strictest interpretation of Lamarck’s ideas—that 
evolution could take place strictly by means of individual 
adaptation—would not translate into anything resembling 
a genetic algorithm (GA) when applied to computing. 
This view would instead seem to represent a kind of 

hillclimbing search or beam search. As we wish to remain 
focussed on GAs in this paper, we will instead apply the 
key elements of Lamarckian evolution to a traditional 
genetic algorithm. 
The central idea of Lamarck’s vision (when contrasted 
with Darwin’s) is that evolution may take place by means 
of individuals adapting to their environment, and passing 
these adaptations on to offspring. In the context of a 
genetic algorithm, this would represent some kind of 
optimization step before the individual is evaluated, in 
which the results of the optimization were permanently 
written back into the individual. An examination of such 
optimization techniques are the subject of the experiments 
described in this paper. 

2 LITERATURE SURVEY 
A survey of the existing literature reveals that many 
elements of this paper have been examined by others in 
some form. A number of publications have explored the 
use of hybrid genetic algorithms; among these are Hart 
and Belew, who examined the use of genetic algorithms 
with local optimizers, and explicitly noted the Lamarckian 
nature of such techniques (1996). Whitley, Gordon, and 
Mathias have observed that Lamarckian evolution may be 
faster than a simple genetic algorithm, but note that it may 
also encourage premature convergence to local optima 
(1994). Ackley and Littman likewise note that 
Lamarckian evolution drives convergence (1994). Dozier, 
Bowen, and Homaifar have reported good results when 
using a hybrid evolutionary search (1998). One paper by 
Kaytama, Sakamoto, and Narihisa explores a hybrid 
genetic algorithm using hillclimbing as an optimization 
on the Travelling Salesman Problem, and finds positive 
results when compared with a non-optimized GA (2000). 
Cheng and Gen have explored the use of memetic 
optimizations, again with positive results (1997). 
Several papers exist describing more strictly Lamarckian 
systems, in which the optimizations are in fact based on 
an individual’s response to its environment; clearly such 
an optimization is possible only in certain applications. 
Grefenstette (1991) and Li, Tan, and Gong (1996) have 
all written on such systems; both use the evolution of 
control systems as the basis of their applications. 
Research has been conducted on using more sophisticated 
techniques for optimization, in a line of inquiry similar to 
the ANN-based optimization in this paper. Most of these 
have involved the use of problem-specific heuristics; 
papers by Cheng, Gen, and Tsujimura (1999), and by 
Gen, Ida, and Li (1998) explore such heuristic 
optimizations. 
 A number of papers have explored the possibility of 
using genetic algorithms with ANNs: Hinton and Nowlan 
have experimented with using GAs to evolve ANNs, 
which in turn were allowed to adapt by means of 
backpropagation-based learning (1996); this GA was not 
Lamarckian however as these adaptations were not 
subsequently passed on. Papers by Kim and Han (2000) 



 

 

and by Han, Moraga, and Sinne (1996) have examined the 
use of GAs as tools to optimize the configuration of 
ANNs, and a paper by Sexton, Dorsey, and Johnson 
compares the performance of ANN learning by 
backpropagation to direct evolution of ANNs; the 
findings suggest that direct evolution of ANNs may be 
successful in some problem domains where 
backpropagation is less so. 

3 THE EXPERIMENTS 
For this paper, a simple genetic algorithm was modified to 
use a series of different optimization techniques; each of 
these techniques was tested on a set of three different 
problems.  
Notwithstanding the differences in optimization technique 
and problem, all experiments used the same underlying 
GA, implemented in the Python programming language. 
This was a generational GA using tournament selection. 
Individuals in all problems were represented as binary 
vectors; the length and interpretation of these binary 
vectors was dependent on the problem at hand. 
Each possible combination of optimization technique and 
problem was tested in a series of ten runs, except for the 
ANN-based optimizations, which were tested in a series 
of three runs. All runs were conducted in the same 
environment (a 350-Mhz Pentium II, with no other 
significant processes running); effectiveness was 
measured in terms of both absolute (wall-clock) and 
relative (per-generation) performance. 

3.1 OPTIMIZATION TECHNIQUES 
Four different optimization techniques were used in the 
experiments; runs with no optimization were also 
included for comparison. 

3.1.1 Hillclimbing 
In a hillclimbing optimization, the candidate individual in 
improved in a series of “steps”: a new individual is 
created which is changed slightly from the original in a 
random fashion (essentially a mutation operation). This 
new individual is compared with the original; if the new 
individual has a better fitness level, then this new 
individual is kept; otherwise the original individual is 
retained. This modify-and-test sequence is repeated some 
number of times, so that the optimized result may be 
significantly better than the original.  
From a performance perspective, hillclimbing has a 
number of desirable attributes: it is usually not expensive 
computationally, and it can significantly enhance the 
overall fitness of the population in a short time—with 
hillclimbing optimization, individuals in the population 
need only be near a local optimum in order to reach it. 
The disadvantage to hillclimbing, like most optimization 
techniques, is that it promotes convergence (Ackley & 
Littman, 1994)—individuals who are somewhat different 

when created may be converted into identical or near-
identical individuals by the hillclimbing optimization, 
reducing overall diversity in the population. 

3.1.2 Social Exchange 
While hillclimbing works by trial-and-error, testing out 
random variations in the hope that one will be 
advantageous, social exchange works by using 
components from a more reliable source: other, better-
performing individuals in the same population.  
Social exchange is also frequently referred to as memetic 
exchange, and is based upon information exchange in 
human societies: rather than having to evolve the ability 
to start fire for example, humans can simply demonstrate 
this skill to others. In a similar fashion, social exchange 
takes an individual of high fitness in the population and 
combines that with the candidate individual, in the hopes 
of creating a more-fit version of the original candidate. As 
hillclimbing is analogous to a mutation operation, social 
exchange is analogous to a crossover operation, 
combining elements from what already exists in the 
population. 
 The primary disadvantage of social exchange is that it 
drives convergence, to a degree even greater than that of 
hillclimbing. Because the source of optimization material 
is other individuals, social exchange may promote overall 
population fitness at the expense of population diversity. 

3.1.3 Artificial Neural Networks 
Another possibility is to use a more sophisticated type of 
optimization. While hillclimbing and social exchange 
may be able to improve a candidate individual, they do so 
essentially by chance—no analysis of the candidate is 
done before optimization.  
The difficulty of course is in deciding what analysis to 
use, and how to identify the important features of a good 
candidate. Artificial Neural Networks here become a 
viable optimization technique: by nature, ANNs excel at 
identifying patterns and trends. (Watson, 1997) 

Structure of the ANNs 
All of the ANNs used in this paper are of a similar 
structure. The fundamental building block of ANNs is the 
artificial neuron; in this paper we limit ourselves to a 
simple kind of artificial neuron called a perceptron. 
A perceptron is a simplified mathematical model of a 
neuron, consisting of a set of input weights w, and a firing 
threshold t. To make use of a perceptron, a set of input 
values v are multiplied against the corresponding input 
weights and summed; if the total is greater than the firing 
threshold then the perceptron “fires”, emitting a “1” 
value; otherwise the perceptron emits a “0” value. 
 The ANNs used in this paper are all 3-layer feed-forward 
ANNs: the perceptrons composing each ANN are arrayed 
into a set of input perceptrons, a middle set of “hidden” 



 

 

perceptrons, and an output layer. Each layer recieves 
input only from the preceding layer, and outputs only to 
the following layer; the input layer must receive its input 
from an external source, and the output layer must 
likewise output its results in some other fashion. 
When used as an optimizer, the ANN receives as input the 
encoding for the candidate individual; the output of the 
ANN is then taken as the optimized result. 

Coevolution of Optimizing ANNs 
ANNs are used in two different ways in these 
experiments. The first is where a population of ANNs are 
co-evolved along with the main population. These ANNs 
are evaluated based on the success of their evaluations: 
every individual in the population is given the chance to 
optimize the candidate individual; the performance of the 
resulting individuals is used to decide on the fitness of the 
ANNs themselves. 
Co-evolving the optimizers along with the population to 
be optimized may seem counterproductive, as the 
optimizers may find themselves trying to “keep up” with 
the main population. Indeed, no great expectations can be 
placed upon the co-evolving ANNs. Instead, we wish to 
use the resulting population of ANNs for another purpose: 
a set of previously-generated ANNs could be used to 
optimize the main population without the computational 
overhead of evolving the ANN population. 

Optimization Using Pre-generated ANNs 
Instead of coevolving ANNs, we may instead wish to use 
a set of pre-generated ANNs as optimizers. Such ANNs 
do not adapt as the run progresses; however the 
computational costs of using these ANNs as optimizers is 
far lower without the overhead of a second evolving 
population. Conveniently, the ANNs generated by the co-
evolving runs should be ideal for use as a static set of 
optimizers. 
 The primary disadvantages to such a technique are 
computational complexity and unpredictability: co-
evolving a set of neural nets can be several times more 
expensive in terms of both memory and speed; in addition 
allowing neural nets to essentially configure themselves 
means that we must take it on faith that the ANNs will 
arrive at sensible conclusions about what does and does 
not constitute a beneficial optimization. 
Early tests using ANNs as optimizers revealed that given 
the opportunity, the ANNs would quickly converge to an 
“optimization-by-duplication” strategy, in which they 
would optimize by converting every single input instance 
into a reasonably good, but identical or near-identical, 
output instance; such an optimization would essentially 
eliminate all diversity in the population in a single 
generation. To avoid this, the ANNs were used more like 
intelligent mutators: a small subset of the ANN’s 
optimized individual (approx. 5%) would be randomly 
selected and incorporated back into the candidate 

individual, allowing the ANN to make improvements but 
preventing it from utterly destroying the original. 

3.2 THE TEST PROBLEMS 
A set of three test problems were used to gauge the 
performance of the various optimization techniques. The 
tests chosen represent a range of difficulties, based on 
how hard the problem is to solve by traditional means. 

3.2.1 Minimum-Spanning Tree Problem 
The Minimum-Spanning Tree (MST) is a well-understood 
problem, for which a number of polynomial-time 
algorithms exist to find solutions (Grimaldi, 1994). 
Because the MST problem is well-understood, and is a 
provably “tractable” problem, MST was chosen as a 
problem for which a GA should be able to perform 
reasonably well. 
The MST problem consists of a connected graph with 
weighted edges, on which one must remove edges in 
order to minimize the total of all edge weights in the 
graph, while ensuring that the graph remains connected.  
All of the experiments based on the MST problem used 
the same 38-vertex graph, which was generated by hand. 
The genetic encoding for the MST problem is very 
simple: one bit for each edge in the graph; if the bit is set, 
the edge is included in the individual.  
Individuals are evaluated in the MST problem as follows: 
the sum of the weights of all edges in the individual is 
taken, and the resulting graph is examined to find out how 
many vertices can be reached from vertex 0. For each 
unreachable vertex, a “penalty weight” is added to the 
sum which is of higher value than the highest possible 
legitimate route.  

3.2.2 The Travelling Salesman Problem 
The Travelling Salesman Problem (TSP) is another well-
known problem which can be used to test GAs. While 
based on a graph like the MST problem, the TSP is a NP-
complete problem and hence cannot be solved in 
polynomial time (Arora, 1996); this makes it a reasonable 
target for GAs, which may be able to find an approximate 
solution in far less total time. 
The TSP involves finding a path through the graph such 
that each vertex is visited exactly once, with the trip 
finishing on the starting vertex. The objective is to find a 
route of minimum total distance (weight). 
The experiments in this paper use a symmetric TSP, 
which essentially means that all edges are bidirectional, 
and if an edge e between vertices v1 and v2 exists, then the 
cost to travel from v1 to v2 is the same as the cost to travel 
from v2 to v1. All experiments used the same 16-vertex 
graph for their test of the TSP. 
The genetic encoding for the TSP is somewhat more 
sophisticated than that for the MST. The individual is 



 

 

divided into a series of eight-bit blocks, one block for 
every vertex in the graph. These eight-bit values are 
decoded into an integer in the range of -128 to +127; this 
value is used to find a vertex index by way of modulo 
arithmetic. Each vertex index points to the next vertex in 
the tour; for example a value of 5 in the third index 
location represents a move from vertex three to vertex 
five in the tour.  

3.2.3 The Pseudo-Random Bit Generation Problem 
The final problem uses ANNs to generate a series of bits; 
the ANNs are evaluated based on the “randomness” of the 
resulting bit sequence. This problem was inspired by the 
work of Koza (1992), who used cellular automata to 
generate pseudo-random numbers. 
This problem is even less tractable than the TSP; while 
the TSP may not have efficient algorithms to find an 
optimal solution, the problem of creating random-bit 
generators has no algorithm to find an optimal solution 
whatsoever. It was for this reason that the PRBG problem 
was chosen. 

Operation of the PRBGs 
To create a random bit sequence, the ANNs must be 
provided with an appropriate set of input values. In the 
PRBGs generated in this paper, four bits of input data 
were provided from which to generate a single bit of 
output data. At this point, the leftmost bit of input data 
was discarded, and the output bit was appended to the 
input data, to create the next element in the input 
sequence. This is in keeping with the general operation of 
pseudo-random number generators, which depend upon 
previous values for the generation of additional values. 
With four bits of input data, each PRBG has a total of 
sixteen possible states; this is a fairly low number but in 
the interests of keeping the problem computable in a 
reasonable time frame this was a necessity. The PRBGs 
were given four random seed bits and asked to produce 
128 random bits, giving ample time to exhibit any 
patterns which might be in their output. 
Each PRBG was encoded as a large sequence of eight-bit 
blocks; these blocks were decoded into integer values as 
in the TSP problem and used as the input weights and 
threshold values in the construction of an ANN. 

Testing the PRBGs 
The greatest difficulty in evolving PRBGs lies in testing 
the “randomness” of the sequences produced; GAs in 
general are very good at exploiting weaknesses in fitness 
functions and may end up creating random-number-test-
breakers rather than random bit sequences as hoped. A set 
of three tests were used on the random bit sequences, 
which seemed to do a reasonable job of identifying 
random-looking bit sequences. These tests were based on 
tests used for more general random-number generators 
described in Knuth (1969).  

The first test was a simple frequency distribution test of 
the bits; on average a good random bit generator should 
produce as many 1 bits as 0 bits. The second test was a 
frequency distribution test for pairs of bits; on average a 
good random bit generator should produce equal 
distributions of all possible two-bit sequences. 
The final test used was a run-length distribution test. 
Based on the Run Test given in Knuth (1969), it tries to 
ensure that the distribution of continuous-sequence length 
approximates that of a fair random-bit generator. 
By an empirical analysis using what one may assume to 
be a fair random-bit generator (the Python 
whrandom.randint() function), it was determined that the 
proper distribution of continuous-sequence lengths was 
such that there should be twice as many sequences of 
length k as sequences of length k+1. The PRBGs were 
therefore tested according to how close their continuous-
sequences matched this distribution. 

3.3 EXPERIMENTAL PARAMETERS 
The following table describes the parameters used in this 
experiment. 

 
Table 1: Experimental Parameters 

 
PARAMETER VALUE 

  
General Parameters 
Selection Method Tournament (size 3) 
1-pt Crossover Probability 75% 
Mutation Probability 15% 
Mutation Impact ~5% of target randomized 
Copy Probability 10% 
Runs per Experiment 10 (3 for ANN optimizers) 
  
Parameters for MST, TSP 
Population Size 100 
Generations 50 
  
Parameters for PRBG 
Population Size 50 
Generations 25 
  
Hillclimbing Parameters (All Problems) 
Max. Steps 3 
Per-Step Impact ~5% of target randomized 
  
Social Exchange Parameters (All Problems) 
1-pt Exchange Probability 80% 



 

 

2-pt Exchange Probability 20% 
  
ANN Optimization Parameters (MST, TSP Only) 
ANN Population Size 10 
ANN Selection Method Tournament (size 3) 
  
ANN Optimization Parameters (PRBG Only) 
ANN Population Size 5 
ANN Selection Method Tournament (size 2) 

4 EXPERIMENT RESULTS 
The following sections provide the results of the 
experiments. Figures 1 – 6 illustrate these results. Two 
types of graphs are provided; one based on per-generation 
performance, and one based on run-time performance, 
which is probably a more realistic measure of efficiency. 
All graphs represent the mean population performance, 
averaged across all runs. All of the graphs share a 
common legend: “NO” indicates no optimization, “HC” 
indicates hillclimbing, “SE” indicates social exchange, 
and “NN” indicates one of the neural net optimizations. 

4.1 MINIMUM-SPANNING TREE PROBLEM 
In terms of relative (per-generation) performance, both 
social exchange and hillclimbing optimizations 
outperformed the no-optimization default early on, with 
all three methods converging at similar values later in 
their runs. Overall, social exchange provided the best 
performance. What is of interest is that both ANN 
optimizations performed considerably worse, converging 
at local minima early on. The ANN optimization based on 
pretrained ANNs performed marginally better than the 
ANNs being co-evolved along with the main population. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  MST Average Performance, per Generation 
 

In terms of absolute performance, social exchange proved 
superior, working even more quickly than the no-
optimization default; although its run took longer in total, 
it also found better solutions to the problem. Hillclimbing 
performed somewhat worse, and not unexpectedly the 
ANN optimization runs took considerably longer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: MST Average Performance, by Run Time 

4.2 TRAVELLING SALESMAN PROBLEM 
For relative performance, social exchange and 
hillclimbing again outperformed the no-optimization 
default, although with hillclimbing ultimately achieving 
better results. Once again, the ANN optimizations fared 
poorly, indeed even more so than in the MST problem.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: TSP Average Performance, per Generation 
 

For absolute performance, social exchange found better 
solutions faster than any other method; of course as 
mentioned above, hillclimbing ultimately outperformed it. 
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The non-optimizing default did nearly as well as social 
exchange, however.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: TSP Average Performance, by Run Time 

4.3 PSEUDO-RANDOM BIT GENERATION 
PROBLEM 

The PRBG problem in many respects was the most 
difficult of all of the problems, and so perhaps its results 
are most telling. In terms of relative performance, social 
exchange was clearly the superior optimization, finding 
better results more quickly than any other method. 
Hillclimbing outperformed the no-optimization default in 
the best-case analysis, but not in the average-case 
analysis. The ANN optimizations continued to 
underperform relative to the other optimization 
techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: PRBG Average Performance, per Generation 
 

For absolute performance, social exchange once again 
proved superior, although at least until no-optimization 
becomes trapped on a local maximum, it remains 
competitive with social exchange. The ANN methods 
continue to underperform, especially in light of the 
extraordinary processing time they require. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: PRBG Average Performance, by Run Time 

5 CONCLUSION 

5.1 PROBLEMS WITH THE EXPERIMENTS 
A number of potential problems within the experiments 
exist. The primary problem involves the implementation 
of the optimization modules: while reasonable care was 
taken coding the modules, the particular implementations 
may have fallen far short of the best possible outcomes, 
most notably in terms of run time, although also in terms 
of results achieved. 
The clock used to time runs (the computer’s system 
clock) is of course an imprecise measuring tool, and other 
processes running at the same time may have influenced 
the time for any particular run. 

5.2 MEANING OF THE RESULTS 
Overall, the results suggest that social exchange is a 
worthwhile optimization for most problems—in terms of 
both absolute and relative performance, social exchange 
routinely outperformed the non-optimized default. 
Hillclimbing seems to find better results than the default, 
although in absolute performance terms it does so at a 
slower rate. Different implementations of a hillclimbing 
optimization may perform more quickly. 
The worst results overall, and perhaps the most 
interesting, were those for the ANN-based optimizers. 
These optimizers routinely fared worse than the default 
GA. If in some sense the TSP is more “difficult” than the 
MST problem, and the PRBG problem is again more 
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“difficult” than the TSP, then the general trend would be 
that the ANN-based optimizers perform progressively 
worse on more difficult problems. While a detailed 
analysis of why exactly the ANN-based optimizers fared 
so poorly is beyond the scope of this paper, the results 
would seem to indicate that the ANN-based optimizers 
strongly encourage convergence of the GA to a non-
optimal solution. 
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