

An Examination of Lamarckian Genetic Algorithms

Cameron Wellock

Brock University, Dept. of Computer Science
St. Catharines, Ontario, Canada L2S 3A1

cw96af@cosc.brocku.ca

Brian J. Ross
Brock University, Dept. of Computer Science

St. Catharines, Ontario, Canada L2S 3A1
bross@cosc.brocku.ca

Abstract

In keeping with the spirit of Lamarckian
evolution, variations on a simple genetic
algorithm are compared, in which each
individual is optimized prior to evaluation. Four
different optimization techniques in all are
tested: random hillclimbing, social (memetic)
exchange, and two techniques using artificial
neural nets (ANNs). These techniques are tested
on a set of three sample problems: an instance of
a minimum-spanning tree problem, an instance
of a travelling salesman problem, and a problem
where ANNs are evolved to generate a random
sequence of bits. The results suggest that in
general, social exchange provides the best
performance, consistently outperforming the
non-optimized genetic algorithm; results for
other optimization techniques are less
compelling.

1 INTRODUCTION

1.1 LAMARCK’S IDEAS OF EVOLUTION
By far the most common understanding of evolution
today is based on the work of Charles Darwin, whose
ideas have not only shaped the modern science of biology
but have also influenced computer science, through the
development of genetic algorithms and similar
techniques. Darwin’s model of evolution through natural
selection however is not the only possible model, nor was
it the first.
In 1801, a Frenchman by the name of Jean-Baptiste de
Monet, Chevalier de Lamarck published his own theory
of evolution (Burkhardt, 1977), almost sixty years before
Darwin published his famous Origin of Species (Darwin,
1859). Natural selection did not play a part in Lamarck’s
theory; rather, plants and animals adapted to their
environment over the course of their lifetime, and these
adaptations were passed on directly to their offspring. To
cite an example from Lamarck (1801) himself:

The bird attracted by need to the water to find there
the prey necessary for its existence, spreads the digits

of its feet when it wishes to strike the water and move
on the surface. The skin that unites these digits at their
base thereby acquires the habit of stretching itself.
Thus, with time, the large membranes uniting the
digits of ducks, geese, etc. have been formed such as
we see them today.
But the bird whose way of life habituates it to perch in
trees has necessarily the digits of its feet extended and
shaped in another way. Its claws are elongated,
sharpened, and curved in a hook to grasp the branches
on which it often rests.
 In the same way one may perceive that the bird of the
shore, which does not at all like to swim, and which
however needs to draw near to the water to find its
prey, will be continually exposed to sinking in the
mid. Wishing to avoid immersing its body in the
liquid, [it] acquires the habit of stretching and
elongating its legs. The result of this for the
generations of these birds that continue to live in this
manner is that the individuals will find themselves
elevated as on stilts, on long naked legs... (pp. 13-14)

While Lamarck’s beliefs lie generally discredited in the
field of biology (Burkhardt, 1977), one may yet wish to
revisit his ideas: while Lamarckian evolution is not found
in nature, it is entirely possible to implement systems
based on his ideas in software.

1.2 AN OVERVIEW OF TRADITIONAL
GENETIC ALGORITHMS

The Darwinian model of evolution has been used
successfully to solve a number of search and optimization
problems using computers (Mitchell, 1996), commonly
using what is referred to as a “genetic algorithm.” The
basic operation of a genetic algorithm, or GA, is as
follows:
A population of individuals is randomly generated. Each
individual represents a potential solution to the problem at
hand: every individual can be evaluated using a “fitness
function” to determine how well it solves the given
problem.
Individuals from the population are chosen for
reproduction. The individuals are chosen randomly, with
some sort of bias in favour of individuals who perform

well in the fitness evaluation. Using “genetic operators,”
new individuals are generated which are based in part
upon the encoding of their “parent” individuals.
As the simulation runs, the problem “search space” is
explored in an effort to find an optimal or near-optimal
solution (Mitchell, 1996). The fact that individuals are
selected for reproduction in a biased fashion means that
on the whole, the simulation will spend most of its time
examining good solutions rather than wasting its time on
bad ones.
One of the most important parts of any genetic algorithm
is the selection mechanism, by which individuals are
chosen for reproduction. A popular selection mechanism
is the tournament selection: an arbitrary subset of the total
population is selected at random; the individual with the
best score from the fitness function is then chosen for
reproduction.
Another important aspect of a GA is the set of genetic
operators used to produce new individuals. Some of the
most common operators are:
• Crossover—in crossover, two (or possibly more)

individuals are combined to create a new individual.
Several variations on crossover exist, which vary
primarily in terms of how the components from the
parent individuals are combined. Crossover serves to
quickly propagate beneficial pieces of an overall
solution across the larger population, and is usually
the most-commonly invoked genetic operator.

• Mutation—mutation involves randomly modifying
some part of a parent individual. Mutation serves to
introduce new potential solutions to the population,
and also to help delay the onset of convergence—the
tendency of any GA to breed populations of
increasingly similar individuals, which makes
crossover useless and effectively stops evolution.
Convergence may be problematic if the simulation
converges before finding an optimal solution.

• Reproduction (copying)—reproduction simply copies
an individual, without change, and inserts the new
copy into the population. This is useful in order to
help prevent the loss of particularly good individuals
in the population.

Another aspect of GAs are how they handle the updating
of the population: GAs which replace the entire
population in a turn-based fashion are called generational;
this is in contrast with steady-state GAs, which
continuously replace small parts of the population with
new individuals. (Mitchell, 1996)

1.3 A LAMARCKIAN APPROACH TO
GENETIC ALGORITHMS

The strictest interpretation of Lamarck’s ideas—that
evolution could take place strictly by means of individual
adaptation—would not translate into anything resembling
a genetic algorithm (GA) when applied to computing.
This view would instead seem to represent a kind of

hillclimbing search or beam search. As we wish to remain
focussed on GAs in this paper, we will instead apply the
key elements of Lamarckian evolution to a traditional
genetic algorithm.
The central idea of Lamarck’s vision (when contrasted
with Darwin’s) is that evolution may take place by means
of individuals adapting to their environment, and passing
these adaptations on to offspring. In the context of a
genetic algorithm, this would represent some kind of
optimization step before the individual is evaluated, in
which the results of the optimization were permanently
written back into the individual. An examination of such
optimization techniques are the subject of the experiments
described in this paper.

2 LITERATURE SURVEY
A survey of the existing literature reveals that many
elements of this paper have been examined by others in
some form. A number of publications have explored the
use of hybrid genetic algorithms; among these are Hart
and Belew, who examined the use of genetic algorithms
with local optimizers, and explicitly noted the Lamarckian
nature of such techniques (1996). Whitley, Gordon, and
Mathias have observed that Lamarckian evolution may be
faster than a simple genetic algorithm, but note that it may
also encourage premature convergence to local optima
(1994). Ackley and Littman likewise note that
Lamarckian evolution drives convergence (1994). Dozier,
Bowen, and Homaifar have reported good results when
using a hybrid evolutionary search (1998). One paper by
Kaytama, Sakamoto, and Narihisa explores a hybrid
genetic algorithm using hillclimbing as an optimization
on the Travelling Salesman Problem, and finds positive
results when compared with a non-optimized GA (2000).
Cheng and Gen have explored the use of memetic
optimizations, again with positive results (1997).
Several papers exist describing more strictly Lamarckian
systems, in which the optimizations are in fact based on
an individual’s response to its environment; clearly such
an optimization is possible only in certain applications.
Grefenstette (1991) and Li, Tan, and Gong (1996) have
all written on such systems; both use the evolution of
control systems as the basis of their applications.
Research has been conducted on using more sophisticated
techniques for optimization, in a line of inquiry similar to
the ANN-based optimization in this paper. Most of these
have involved the use of problem-specific heuristics;
papers by Cheng, Gen, and Tsujimura (1999), and by
Gen, Ida, and Li (1998) explore such heuristic
optimizations.
 A number of papers have explored the possibility of
using genetic algorithms with ANNs: Hinton and Nowlan
have experimented with using GAs to evolve ANNs,
which in turn were allowed to adapt by means of
backpropagation-based learning (1996); this GA was not
Lamarckian however as these adaptations were not
subsequently passed on. Papers by Kim and Han (2000)

and by Han, Moraga, and Sinne (1996) have examined the
use of GAs as tools to optimize the configuration of
ANNs, and a paper by Sexton, Dorsey, and Johnson
compares the performance of ANN learning by
backpropagation to direct evolution of ANNs; the
findings suggest that direct evolution of ANNs may be
successful in some problem domains where
backpropagation is less so.

3 THE EXPERIMENTS
For this paper, a simple genetic algorithm was modified to
use a series of different optimization techniques; each of
these techniques was tested on a set of three different
problems.
Notwithstanding the differences in optimization technique
and problem, all experiments used the same underlying
GA, implemented in the Python programming language.
This was a generational GA using tournament selection.
Individuals in all problems were represented as binary
vectors; the length and interpretation of these binary
vectors was dependent on the problem at hand.
Each possible combination of optimization technique and
problem was tested in a series of ten runs, except for the
ANN-based optimizations, which were tested in a series
of three runs. All runs were conducted in the same
environment (a 350-Mhz Pentium II, with no other
significant processes running); effectiveness was
measured in terms of both absolute (wall-clock) and
relative (per-generation) performance.

3.1 OPTIMIZATION TECHNIQUES
Four different optimization techniques were used in the
experiments; runs with no optimization were also
included for comparison.

3.1.1 Hillclimbing
In a hillclimbing optimization, the candidate individual in
improved in a series of “steps”: a new individual is
created which is changed slightly from the original in a
random fashion (essentially a mutation operation). This
new individual is compared with the original; if the new
individual has a better fitness level, then this new
individual is kept; otherwise the original individual is
retained. This modify-and-test sequence is repeated some
number of times, so that the optimized result may be
significantly better than the original.
From a performance perspective, hillclimbing has a
number of desirable attributes: it is usually not expensive
computationally, and it can significantly enhance the
overall fitness of the population in a short time—with
hillclimbing optimization, individuals in the population
need only be near a local optimum in order to reach it.
The disadvantage to hillclimbing, like most optimization
techniques, is that it promotes convergence (Ackley &
Littman, 1994)—individuals who are somewhat different

when created may be converted into identical or near-
identical individuals by the hillclimbing optimization,
reducing overall diversity in the population.

3.1.2 Social Exchange
While hillclimbing works by trial-and-error, testing out
random variations in the hope that one will be
advantageous, social exchange works by using
components from a more reliable source: other, better-
performing individuals in the same population.
Social exchange is also frequently referred to as memetic
exchange, and is based upon information exchange in
human societies: rather than having to evolve the ability
to start fire for example, humans can simply demonstrate
this skill to others. In a similar fashion, social exchange
takes an individual of high fitness in the population and
combines that with the candidate individual, in the hopes
of creating a more-fit version of the original candidate. As
hillclimbing is analogous to a mutation operation, social
exchange is analogous to a crossover operation,
combining elements from what already exists in the
population.
 The primary disadvantage of social exchange is that it
drives convergence, to a degree even greater than that of
hillclimbing. Because the source of optimization material
is other individuals, social exchange may promote overall
population fitness at the expense of population diversity.

3.1.3 Artificial Neural Networks
Another possibility is to use a more sophisticated type of
optimization. While hillclimbing and social exchange
may be able to improve a candidate individual, they do so
essentially by chance—no analysis of the candidate is
done before optimization.
The difficulty of course is in deciding what analysis to
use, and how to identify the important features of a good
candidate. Artificial Neural Networks here become a
viable optimization technique: by nature, ANNs excel at
identifying patterns and trends. (Watson, 1997)

Structure of the ANNs
All of the ANNs used in this paper are of a similar
structure. The fundamental building block of ANNs is the
artificial neuron; in this paper we limit ourselves to a
simple kind of artificial neuron called a perceptron.
A perceptron is a simplified mathematical model of a
neuron, consisting of a set of input weights w, and a firing
threshold t. To make use of a perceptron, a set of input
values v are multiplied against the corresponding input
weights and summed; if the total is greater than the firing
threshold then the perceptron “fires”, emitting a “1”
value; otherwise the perceptron emits a “0” value.
 The ANNs used in this paper are all 3-layer feed-forward
ANNs: the perceptrons composing each ANN are arrayed
into a set of input perceptrons, a middle set of “hidden”

perceptrons, and an output layer. Each layer recieves
input only from the preceding layer, and outputs only to
the following layer; the input layer must receive its input
from an external source, and the output layer must
likewise output its results in some other fashion.
When used as an optimizer, the ANN receives as input the
encoding for the candidate individual; the output of the
ANN is then taken as the optimized result.

Coevolution of Optimizing ANNs
ANNs are used in two different ways in these
experiments. The first is where a population of ANNs are
co-evolved along with the main population. These ANNs
are evaluated based on the success of their evaluations:
every individual in the population is given the chance to
optimize the candidate individual; the performance of the
resulting individuals is used to decide on the fitness of the
ANNs themselves.
Co-evolving the optimizers along with the population to
be optimized may seem counterproductive, as the
optimizers may find themselves trying to “keep up” with
the main population. Indeed, no great expectations can be
placed upon the co-evolving ANNs. Instead, we wish to
use the resulting population of ANNs for another purpose:
a set of previously-generated ANNs could be used to
optimize the main population without the computational
overhead of evolving the ANN population.

Optimization Using Pre-generated ANNs
Instead of coevolving ANNs, we may instead wish to use
a set of pre-generated ANNs as optimizers. Such ANNs
do not adapt as the run progresses; however the
computational costs of using these ANNs as optimizers is
far lower without the overhead of a second evolving
population. Conveniently, the ANNs generated by the co-
evolving runs should be ideal for use as a static set of
optimizers.
 The primary disadvantages to such a technique are
computational complexity and unpredictability: co-
evolving a set of neural nets can be several times more
expensive in terms of both memory and speed; in addition
allowing neural nets to essentially configure themselves
means that we must take it on faith that the ANNs will
arrive at sensible conclusions about what does and does
not constitute a beneficial optimization.
Early tests using ANNs as optimizers revealed that given
the opportunity, the ANNs would quickly converge to an
“optimization-by-duplication” strategy, in which they
would optimize by converting every single input instance
into a reasonably good, but identical or near-identical,
output instance; such an optimization would essentially
eliminate all diversity in the population in a single
generation. To avoid this, the ANNs were used more like
intelligent mutators: a small subset of the ANN’s
optimized individual (approx. 5%) would be randomly
selected and incorporated back into the candidate

individual, allowing the ANN to make improvements but
preventing it from utterly destroying the original.

3.2 THE TEST PROBLEMS
A set of three test problems were used to gauge the
performance of the various optimization techniques. The
tests chosen represent a range of difficulties, based on
how hard the problem is to solve by traditional means.

3.2.1 Minimum-Spanning Tree Problem
The Minimum-Spanning Tree (MST) is a well-understood
problem, for which a number of polynomial-time
algorithms exist to find solutions (Grimaldi, 1994).
Because the MST problem is well-understood, and is a
provably “tractable” problem, MST was chosen as a
problem for which a GA should be able to perform
reasonably well.
The MST problem consists of a connected graph with
weighted edges, on which one must remove edges in
order to minimize the total of all edge weights in the
graph, while ensuring that the graph remains connected.
All of the experiments based on the MST problem used
the same 38-vertex graph, which was generated by hand.
The genetic encoding for the MST problem is very
simple: one bit for each edge in the graph; if the bit is set,
the edge is included in the individual.
Individuals are evaluated in the MST problem as follows:
the sum of the weights of all edges in the individual is
taken, and the resulting graph is examined to find out how
many vertices can be reached from vertex 0. For each
unreachable vertex, a “penalty weight” is added to the
sum which is of higher value than the highest possible
legitimate route.

3.2.2 The Travelling Salesman Problem
The Travelling Salesman Problem (TSP) is another well-
known problem which can be used to test GAs. While
based on a graph like the MST problem, the TSP is a NP-
complete problem and hence cannot be solved in
polynomial time (Arora, 1996); this makes it a reasonable
target for GAs, which may be able to find an approximate
solution in far less total time.
The TSP involves finding a path through the graph such
that each vertex is visited exactly once, with the trip
finishing on the starting vertex. The objective is to find a
route of minimum total distance (weight).
The experiments in this paper use a symmetric TSP,
which essentially means that all edges are bidirectional,
and if an edge e between vertices v1 and v2 exists, then the
cost to travel from v1 to v2 is the same as the cost to travel
from v2 to v1. All experiments used the same 16-vertex
graph for their test of the TSP.
The genetic encoding for the TSP is somewhat more
sophisticated than that for the MST. The individual is

divided into a series of eight-bit blocks, one block for
every vertex in the graph. These eight-bit values are
decoded into an integer in the range of -128 to +127; this
value is used to find a vertex index by way of modulo
arithmetic. Each vertex index points to the next vertex in
the tour; for example a value of 5 in the third index
location represents a move from vertex three to vertex
five in the tour.

3.2.3 The Pseudo-Random Bit Generation Problem
The final problem uses ANNs to generate a series of bits;
the ANNs are evaluated based on the “randomness” of the
resulting bit sequence. This problem was inspired by the
work of Koza (1992), who used cellular automata to
generate pseudo-random numbers.
This problem is even less tractable than the TSP; while
the TSP may not have efficient algorithms to find an
optimal solution, the problem of creating random-bit
generators has no algorithm to find an optimal solution
whatsoever. It was for this reason that the PRBG problem
was chosen.

Operation of the PRBGs
To create a random bit sequence, the ANNs must be
provided with an appropriate set of input values. In the
PRBGs generated in this paper, four bits of input data
were provided from which to generate a single bit of
output data. At this point, the leftmost bit of input data
was discarded, and the output bit was appended to the
input data, to create the next element in the input
sequence. This is in keeping with the general operation of
pseudo-random number generators, which depend upon
previous values for the generation of additional values.
With four bits of input data, each PRBG has a total of
sixteen possible states; this is a fairly low number but in
the interests of keeping the problem computable in a
reasonable time frame this was a necessity. The PRBGs
were given four random seed bits and asked to produce
128 random bits, giving ample time to exhibit any
patterns which might be in their output.
Each PRBG was encoded as a large sequence of eight-bit
blocks; these blocks were decoded into integer values as
in the TSP problem and used as the input weights and
threshold values in the construction of an ANN.

Testing the PRBGs
The greatest difficulty in evolving PRBGs lies in testing
the “randomness” of the sequences produced; GAs in
general are very good at exploiting weaknesses in fitness
functions and may end up creating random-number-test-
breakers rather than random bit sequences as hoped. A set
of three tests were used on the random bit sequences,
which seemed to do a reasonable job of identifying
random-looking bit sequences. These tests were based on
tests used for more general random-number generators
described in Knuth (1969).

The first test was a simple frequency distribution test of
the bits; on average a good random bit generator should
produce as many 1 bits as 0 bits. The second test was a
frequency distribution test for pairs of bits; on average a
good random bit generator should produce equal
distributions of all possible two-bit sequences.
The final test used was a run-length distribution test.
Based on the Run Test given in Knuth (1969), it tries to
ensure that the distribution of continuous-sequence length
approximates that of a fair random-bit generator.
By an empirical analysis using what one may assume to
be a fair random-bit generator (the Python
whrandom.randint() function), it was determined that the
proper distribution of continuous-sequence lengths was
such that there should be twice as many sequences of
length k as sequences of length k+1. The PRBGs were
therefore tested according to how close their continuous-
sequences matched this distribution.

3.3 EXPERIMENTAL PARAMETERS
The following table describes the parameters used in this
experiment.

Table 1: Experimental Parameters

PARAMETER VALUE

General Parameters
Selection Method Tournament (size 3)
1-pt Crossover Probability 75%
Mutation Probability 15%
Mutation Impact ~5% of target randomized
Copy Probability 10%
Runs per Experiment 10 (3 for ANN optimizers)

Parameters for MST, TSP
Population Size 100
Generations 50

Parameters for PRBG
Population Size 50
Generations 25

Hillclimbing Parameters (All Problems)
Max. Steps 3
Per-Step Impact ~5% of target randomized

Social Exchange Parameters (All Problems)
1-pt Exchange Probability 80%

2-pt Exchange Probability 20%

ANN Optimization Parameters (MST, TSP Only)
ANN Population Size 10
ANN Selection Method Tournament (size 3)

ANN Optimization Parameters (PRBG Only)
ANN Population Size 5
ANN Selection Method Tournament (size 2)

4 EXPERIMENT RESULTS
The following sections provide the results of the
experiments. Figures 1 – 6 illustrate these results. Two
types of graphs are provided; one based on per-generation
performance, and one based on run-time performance,
which is probably a more realistic measure of efficiency.
All graphs represent the mean population performance,
averaged across all runs. All of the graphs share a
common legend: “NO” indicates no optimization, “HC”
indicates hillclimbing, “SE” indicates social exchange,
and “NN” indicates one of the neural net optimizations.

4.1 MINIMUM-SPANNING TREE PROBLEM
In terms of relative (per-generation) performance, both
social exchange and hillclimbing optimizations
outperformed the no-optimization default early on, with
all three methods converging at similar values later in
their runs. Overall, social exchange provided the best
performance. What is of interest is that both ANN
optimizations performed considerably worse, converging
at local minima early on. The ANN optimization based on
pretrained ANNs performed marginally better than the
ANNs being co-evolved along with the main population.

Figure 1: MST Average Performance, per Generation

In terms of absolute performance, social exchange proved
superior, working even more quickly than the no-
optimization default; although its run took longer in total,
it also found better solutions to the problem. Hillclimbing
performed somewhat worse, and not unexpectedly the
ANN optimization runs took considerably longer.

Figure 2: MST Average Performance, by Run Time

4.2 TRAVELLING SALESMAN PROBLEM
For relative performance, social exchange and
hillclimbing again outperformed the no-optimization
default, although with hillclimbing ultimately achieving
better results. Once again, the ANN optimizations fared
poorly, indeed even more so than in the MST problem.

Figure 3: TSP Average Performance, per Generation

For absolute performance, social exchange found better
solutions faster than any other method; of course as
mentioned above, hillclimbing ultimately outperformed it.

MST Average Performance
Per Generation

0

50

100

150

200

250

300

350

400

450

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

MST Average Performance
Actual Run Time

0

50

100

150

200

250

300

350

400

450

0.1 1 10 100 1000 10000

Time (seconds)

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

TSP Average Performance
Per Generation

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

The non-optimizing default did nearly as well as social
exchange, however.

Figure 4: TSP Average Performance, by Run Time

4.3 PSEUDO-RANDOM BIT GENERATION
PROBLEM

The PRBG problem in many respects was the most
difficult of all of the problems, and so perhaps its results
are most telling. In terms of relative performance, social
exchange was clearly the superior optimization, finding
better results more quickly than any other method.
Hillclimbing outperformed the no-optimization default in
the best-case analysis, but not in the average-case
analysis. The ANN optimizations continued to
underperform relative to the other optimization
techniques.

Figure 5: PRBG Average Performance, per Generation

For absolute performance, social exchange once again
proved superior, although at least until no-optimization
becomes trapped on a local maximum, it remains
competitive with social exchange. The ANN methods
continue to underperform, especially in light of the
extraordinary processing time they require.

Figure 6: PRBG Average Performance, by Run Time

5 CONCLUSION

5.1 PROBLEMS WITH THE EXPERIMENTS
A number of potential problems within the experiments
exist. The primary problem involves the implementation
of the optimization modules: while reasonable care was
taken coding the modules, the particular implementations
may have fallen far short of the best possible outcomes,
most notably in terms of run time, although also in terms
of results achieved.
The clock used to time runs (the computer’s system
clock) is of course an imprecise measuring tool, and other
processes running at the same time may have influenced
the time for any particular run.

5.2 MEANING OF THE RESULTS
Overall, the results suggest that social exchange is a
worthwhile optimization for most problems—in terms of
both absolute and relative performance, social exchange
routinely outperformed the non-optimized default.
Hillclimbing seems to find better results than the default,
although in absolute performance terms it does so at a
slower rate. Different implementations of a hillclimbing
optimization may perform more quickly.
The worst results overall, and perhaps the most
interesting, were those for the ANN-based optimizers.
These optimizers routinely fared worse than the default
GA. If in some sense the TSP is more “difficult” than the
MST problem, and the PRBG problem is again more

TSP Average Performance
Actual Run Time

0

20

40

60

80

100

120

140

1 10 100 1000 10000

Time (seconds)

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

PRBG Average Performance
Per Generation

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 3 5 7 9 11 13 15 17 19 21 23 25

Generation

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

PRBG Average Performance
Actual Run Time

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 10 100 1000 10000 100000

Time (seconds)

Fi
tn

es
s

NO
HC
SE
NN Train
NN Run

“difficult” than the TSP, then the general trend would be
that the ANN-based optimizers perform progressively
worse on more difficult problems. While a detailed
analysis of why exactly the ANN-based optimizers fared
so poorly is beyond the scope of this paper, the results
would seem to indicate that the ANN-based optimizers
strongly encourage convergence of the GA to a non-
optimal solution.

Acknowledgements
The authors would like to acknowledge the contributions
of the following, whose assistance (direct or indirect)
helped to make this paper possible.
• G. Strangman, whose Chi-square functions in his

stats.py module were essential in the implementation
of the pseudo-random bit generator tests;

• Stephen Pinker, whose discussion of Lamarckian
evolution (1997) led ultimately to this paper.

• This research was partially funded by NSERC
operating grant 138467-1998.

References
Ackley, D. H. & Littman, M. L. A Case for Lamarckian
Evolution. (1994). In C. G. Langton (Ed.), Artificial Life
III. (pp. 3-11). Reading, MA: Addison-Wesley.
Arora, Sanjeev. Polynomial time approximation schemes
for Euclidean TSP and other geometric problems. (1996).
In Proceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Science. (pp. 2-12).
Burkhardt, Richard W., Jr. (1977). The Sprit of System.
Cambridge, MA: Harvard University Press.
Cheng, R. & Gen, M. (1997). Parallel Machine
Scheduling Problems Using Memetic Algorithms.
Computers & Industrial Engineering, 33(3-4), 761-764.
Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial
survey of job-shop scheduling problems using genetic
algorithms, part II: hybrid genetic search strategies.
Computers & Industrial Engineering, 36, 343-364.
Darwin, Charles. (1859) . On the Origin of Species by
Means of Natural Selection. London: J. Murray.
Dozier, G., Bowen, J., & Homaifar, A. (1998). Solving
Constraint Satisfaction Problems Using Hybrid
Evolutionary Search. IEEE Transactions on Evolutionary
Computation, 2(1), 23-32.
Gen, M., Ida, K. & Li, Y. (1998). Bicriteria
Transportation Problem by Hybrid Genetic Algorithm.
Computers & Industrial Engineering, 35(1-2), 363-366.
Grefenstette, J. Lamarckian Learning in Multi-agent
Environments. (1991). In Proceedings of the Fourth
International Conference on Genetic Algorithms. (pp.
303-310). San Mateo, CA: Morgan Kaufmann.
Grimaldi, R. (1994). Discrete and Combinatorial
Mathematics. Reading, MA: Addison-Wesley.

Han, J., Moraga, C., & Sinne, S. (1996). Optimization of
Feedforward Neural Networks. Engineering Applications
of Artificial Intelligence, 9(2), 109-119.
 Hart, W. E., & Belew, R. K.. Optimization with Genetic
Algorithm Hybrids that Use Local Search. (1996). In R.K.
Belew & M. Mitchell (Eds.), Adaptive Individuals in
Evolving Populations. (pp. 483-496). Reading, MA:
Addison-Wesley.
Hinton, G. E. & Nowlan, S. J. How Learning Can Guide
Evolution. (1996). In R. K. Belew & M. Mitchell (Eds.),
Adaptive Individuals in Evolving Populations. (pp. 447-
457). Reading, MA: Addison-Wesley.
Katayama, K., Sakamoto, H. & Narihisa, H. (2000). The
Efficiency of Hybrid Mutation Genetic Algorithm for the
Travelling Salesman Problem. Mathematical and
Computer Modelling, 31, 197-203.
Kim, K. & Han, I. (2000). Genetic algorithms approach to
feature discretization in artificial neural networks for the
prediction of stock price index. Expert Systems with
Applications, 19, 125-132.
Knuth, Donald. (1969). The Art of Computer
Programming, vol. 2. Reading, MA: Addison-Wesley.
Koza, J. R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Reading, MA: MIT Press.
Lamarck, Jean-Baptiste. (1801). Système des animaux
sans vertèbres. Paris.
Li, Y., Tan, K. C., & Gong, M. Model reduction in
control systems by means of global structure evolution
and local parameter learning. (1996). In D. Dasgupta & Z.
Michaelwicz (Eds.), Evolutionary Algorithms in
Engineering Applications. New York: Springer-Verlag.
Mitchell, Melanie. (1996). An Introduction to Genetic
Algorithms. Cambridge, MA: MIT Press.
Pinker, S. (1997). How the Mind Works. New York: W.
W. Norton & Co.
 Watson, M. (1997). Intelligent Java Applications for the
Internet and Intranets. San Francisco: Morgan Kaufmann
Publishers.
Whitley, D., Gordon, V. S., & Mathias, K. Lamarckian
Evolution, the Baldwin Effect and Function Optimization.
(1994). In Y. Davidor et al. (Eds.), Parallel Problem
Solving From Nature, vol. 3. (pp. 6-15). New York:
Springer-Verlag.

	INTRODUCTION
	LAMARCK’S IDEAS OF EVOLUTION
	AN OVERVIEW OF TRADITIONAL GENETIC ALGORITHMS
	A LAMARCKIAN APPROACH TO GENETIC ALGORITHMS

	LITERATURE SURVEY
	THE EXPERIMENTS
	OPTIMIZATION TECHNIQUES
	Hillclimbing
	Social Exchange
	Artificial Neural Networks
	Structure of the ANNs
	Coevolution of Optimizing ANNs
	Optimization Using Pre-generated ANNs

	THE TEST PROBLEMS
	Minimum-Spanning Tree Problem
	The Travelling Salesman Problem
	The Pseudo-Random Bit Generation Problem
	Operation of the PRBGs
	Testing the PRBGs

	EXPERIMENTAL PARAMETERS

	EXPERIMENT RESULTS
	MINIMUM-SPANNING TREE PROBLEM
	TRAVELLING SALESMAN PROBLEM
	PSEUDO-RANDOM BIT GENERATION PROBLEM

	CONCLUSION
	PROBLEMS WITH THE EXPERIMENTS
	MEANING OF THE RESULTS
	Acknowledgements
	References

