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Abstract 

Gentropy is a genetic programming system that evolves two-dimensional procedural textures. It synthesizes 

textures by combining mathematical and image manipulation functions into formulas. A formula can be re-

evaluated with arbitrary texture-space coordinates, to generate a new portion of the texture in texture space. 

Most evolutionary art programs are interactive, and require the user to repeatedly choose the best images from a 

displayed generation. Gentropy uses an unsupervised approach, where one or more target texture image are 

supplied to the system, and represent the desired texture features, such as colour, shape and smoothness 

(contrast). Then, Gentropy evolves textures independent of any further user involvement. The evolved texture 

will not be identical to the target texture, but rather, will exhibit characteristics similar to it. When more than 

one texture is supplied as a target, multiobjective feature analysis is performed. These feature tests may be 

combined and given different priorities during evaluation. It is therefore possible to use several target images, 

each with its own fitness function measuring particular visual characteristics. Gentropy also permits the use of 

multiple subpopulations, each of which may use its own texture evaluation criteria and target texture.  
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1 INTRODUCTION 
 

Computers have established themselves as indispensable tools in artistic applications. One such application is 

the generation of interesting images and textures for desktops, web pages, documents and animation programs. While a 

computer program has no concept of creativity, it is still a powerful tool to be used by an artist for generating fascinating 

textures. Given the mathematical nature of procedural (or algorithmic) textures, computer software is well suited to their 

generation [1, 2].  On the other hand, random texture generation is not a practical strategy. Of the virtually infinite 

number of procedural textures possible, a relatively small proportion of them will be aesthetically interesting and useful 

to the artist.   

One technique found to be useful for constraining the random generation of textures is evolutionary 

computation [3, 4, 5].  Evolution is a practical search paradigm for searching a vast space of candidate solutions. This 

applies to texture generation, given the enormous number of texture formulas possible. Since computer software is 

currently unable to make aesthetic and artistic judgments about textures, the most practical solution up to now has been 

to incorporate the user in the judgment task during texture creation [6, 7, 8, 9]. Interactive evolutionary texture 

generation applications take a given texture formula, and perform varying degrees of mutation upon it. This population 

of textures is displayed to the user. The user interactively selects the mutated texture of most interest, thereby 

determining the direction of the texture generation process. The user also determines the amount of mutation performed 

on it. Typically, early stages in the synthesis process will use high levels of mutation. As the user focuses on a texture of 

interest, the mutation rate will be reduced. Interactive texture evolution therefore is an iterative process, in which the user 

drives the search towards a texture of interest.  Of special note is the Genshade system, which evolves Renderman 

shaders [10]. Genshade takes an unsupervised approach, in which automatic image analysis is performed during genetic 

evolution. 

This paper presents the Gentropy system. Like other evolutionary art applications, Gentropy uses evolutionary 

computation to explore the space of texture formulas. However, Gentropy is an unsupervised texture synthesis system. 

Its major contribution is that it uses a robust set of automated image analyses to evaluate the suitability of candidate 

textures, while at the same time uses a fairly rudimentary set of texture generation operators. The user supplies Gentropy 

with one or more target texture images. The user also indicates how each texture is to be evaluated, based on a suite of 

image analysis tests. A wide variety of subpopulation architectures are definable by the user. Each subpopulation uses 
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one or more textures and feature tests, and feeds its results into other similarly specialized subpopulations.  Gentropy 

takes this information, and at the end of a run generates a solution texture, which will exhibit characteristics of the target 

textures. Note that it is not the goal to find a procedural texture that generates a texture identical to the target. Rather, the 

target texture is used for synthesizing a texture that is similar to it, according to the specified image analyses criteria. 

An outline of the paper is as follows. Section 2 discusses evolutionary computation and genetic programming. 

Section 3 reviews the concept of procedural texture generation, and discusses the procedural texture formulas used in 

Gentropy. Section 4 discusses the types of image analyses performed in Gentropy. Other details about the Gentropy 

system are given in Section 5. Some example results are presented in Section 6. Comparisons to related work are given 

in Section 7. A discussion concludes the paper in Section 8. Some example texture formulas as obtained by Gentropy for 

the results in Section 6 are given in Appendix A. 

2 EVOLUTIONARY COMPUTATION AND GENETIC PROGRAMMING 

Evolutionary computation is a search strategy inspired by natural evolution. The most popular evolutionary 

search technique is the genetic algorithm (GA) [3, 4]. An example GA is in Fig. 1. To use a GA to solve a problem, an 

encoding must be derived which maps candidate problem solutions into a binary chromosome or string. These strings are 

considered “individuals” to be tested and reproduced during the course of the GA run. A population of random 

chromosomes is initially created. Each individual is tested and given a fitness measurement, which indicates its relative 

merit towards solving the problem of interest. To create a new population of individuals, fitness proportional selection of 

individuals is performed. This models the concept of “Darwinian survival of the fittest”, since the stronger individuals 

(those with better fitness scores) will be more likely to be selected for reproduction than the weaker individuals. The 

most common types of reproduction operators are crossover (genetic recombination) and mutation. Crossover takes two 

selected parent individuals, and randomly mixes their chromosomes to create two offspring. The power of crossover 

stems from the idea that, as in nature, offspring may inherit  the favourable characteristics of each parent. In other words, 

crossover is the means in which desirable genetic characteristics can be combined and inherited in subsequent 

generations. Mutation is used to maintain population diversity during evolution. The power of GA comes from the fact 

that, using fitness-proportional selection and crossover reproduction, a vast number of problem prototypes can be 

explored during a run. This has been called “implicit parallelism” in the literature. 



Wiens & Ross Page 4 12/08/2004 

A powerful variation of GA is genetic programming (GP) [5]. Rather than using fixed linear chromosomes of 

bits, GP denotes individuals as executable computer programs, typically denoted by parse trees. Crossover is performed 

by selecting branches in two parse trees, and swapping the branches. Mutation is done by replacing a branch with a 

randomly generated one. Both these operations are performed in a way that preserves syntactic correctness of programs. 

In addition, it is important that a closure property be maintained: the primitive functions and statements of the 

programming language being used must be able to execute any possible data arguments without producing an error. For 

example, an arithmetic division operator must not crash if a zero-valued denominator is given to it. So long as syntactic 

correctness and closure are maintained, GP essentially works in the same manner as a conventional GA. When a program 

is to be evaluated for its fitness, it is executed upon the problem of interest, its ability to solve the problem is measured, 

and the resulting fitness score is assigned to the program.  

GA and GP are widely used in scientific, engineering, and artistic applications. Their implicit parallelism makes 

them both very effective in finding solutions in large search spaces. Naturally, GP is particularly adept at solving 

problems that are more algorithmic in nature, since GP evolves programs. A representative selection of applications of 

GA and GP can be found in [11].  

3 PROCEDURAL TEXTURES  
 
Procedural or algorithmic textures are patterns that are produced using an assortment of mathematical and 

algorithmic operators. The input to a texture formula is normally the coordinates of the pixel being rendered. The 

operators in a texture formula return greyscale or colour data. The rest of this section describes the texture elements used 

in Gentropy. 

3.1 TEXTURE FUNCTION SET 

 
The texture function set consists of various mathematical and image processing functions that take an RGB 

colour (vector) or channel (scalar) as arguments and return either a vector or scalar. A vector is represented by three 

floating-point values, or channels, while a scalar is a single floating-point channel, defining a shade of grey. Gentropy 

uses the following function set: 

X Y ERC VERC COLGRAD + - diff * / sin cos mod log pow not avg max min if 

lum rgb noise turb turbflow cloud marble warprel warpabs kaleid tile 

tilerad forv chn wchn 
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The above operations are combined into a texture formula in such a way that the output is always an RGB colour vector. 

The X and Y parameters denote the coordinates of the pixel being rendered. Some example texture formulas and their 

rendered results are given in Table 1. Since the functions that make up the texture formula may return any floating-point 

value, the colour channels are truncated to a range of -1 to 1, before the conversion to an integer range of 0 to 255 

(required by the RGB image file format). 

Terminals (constants, and functions that take no arguments) have upper-case names. ERC returns a random 

scalar and VERC, a random vector. They appear in a texture formula as either a floating-point number or a set of three 

floating-point numbers within parentheses. In COLGRAD, which creates a colour gradient, the red and green values are 

the current x and y positions and the blue value is the distance to the origin. The lum operation finds the luminance, 

average of all channels, which is a grey colour. Also, there is the rgb function, which takes three arguments and returns 

an RGB colour. The other functions are discussed below. 

3.2 NOISE FUNCTIONS 

 
The noise, turb, turbflow, cloud and marble functions are more complex, generating shaded bumps, 

curves, gases and other natural-looking effects. See [1] for in-depth discussions of these functions. Table 2 shows a few 

examples. These functions are capable of producing a wide variety of textures. The noise function is the basis for the 

others. It creates a grid of random grey points and then interpolates between them. X and Y arguments specify the 

position within the noise texture and the grid size is determined by a frequency argument. Noise values are divided 

by a varying amplitude value and added together in the turb (turbulence) operation. 

The following formula is for turb, where col holds the grey colour value returned, and x and y define the 

current position in texture space. Start, end and frequency are all arguments to the function. Example values for 

these variables are 1, 256 and any positive floating-point number, respectively. 
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Amplitude and frequency are both varied in the turbflow (turbulent flow) function. In the following pseudo-

code for turbflow, the num iteration variable is positive and small, for example, less than 6. Persistence is also 

positive and less than or equal to 1. The turboflow formula is: 

∑
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Cloud is based on turbulence [12]. See [1] for details on marble and other noise operations. 

3.3 WARPS AND TILING 

 
In the function set, there are several warp and tiling operations, which alter the positions of or duplicate pixel 

values. The warps take the current x and y positions in texture space and alter them by adding an increment value to each 

(relative) or assigning them new values (absolute). In addition to the relative (warprel) and absolute (warpabs) 

warps, there are three tiling operations (tile, tilerad and kaleid), which create rectangular, circular and 

kaleidoscopic repeating patterns. 

3.4 AUTOMATICALLY DEFINED ITERATION 

 
The final set of three operations performs iteration over a finite colour vector. This iterative control is termed 

automatically defined iteration or ADI ([13], p.121). The function forv performs the actual iteration, like a for-loop in 

C or dotimes in the LISP programming language, with the current channel as the looping variable.  

Operations chn and wchn either return the appropriate scalar value (one channel of a colour vector) based on 

the current channel or the current channel plus some increment value, respectively. If there is a chn or wchn in the 

subtree, different values will likely be returned for each iteration, as the channel varies, and forv returns a (non-grey) 

colour. Otherwise, an iteration will have the same result and a grey colour will be produced. For example, the last texture 

in Table 2 has several non-grey colours due to its use of the wchn operator.  

4 IMAGE ANALYSIS 

Selection of individual textures for reproduction depends on their fitness with respect to the rest of the 

population. Gentropy’s fitness function assigns every individual texture a fitness measure between 0 and 1, with 1 
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indicating a perfect score. This fitness measure is determined by feature tests, which compare the generated image to the 

target image. This section discusses the suite of image analyses possible within Gentropy. 

4.1 IMAGE COMPARISON 

Colour quantization is used to ease matching, particularly the shape aspect. It categorizes the colours so that 

very similar colours are represented by the same colour. This stops analyses of minute colour differences that the human 

eye normally cannot judge anyway. However, this does introduce some error to the matching process. For instance, the 

fitness function may deem two images identical, even though their colouring or shape is slightly different. The colour 

space — or number of colours involved — is reduced so that histograms are smaller. 

Histograms represent the colour distribution of an image by storing the frequency of each quantized colour [14]. 

They are used by many of the feature tests in Gentropy, including those that match directly and those that match 

histograms. Direct matching involves the comparison of two images, pixel by pixel, while histogram matching calculates 

a histogram for the images and then measures the distance between the histograms. Position is irrelevant in the latter but 

not the former. In other words, direct matching includes shape information in its analysis. 

4.2 FEATURE TESTS 

Gentropy uses image comparison methods, mainly adapted from query by image content (QBIC) applications 

[14, 15]. These programs take a target image and search a database for similar images. They often use histograms and 

wavelet analysis to match images. Table 3 shows several feature tests the user may choose from as part of the fitness 

function. 

It is extremely difficult to do an accurate automatic evaluation of an image. Precise image comparisons require 

a host of complex, computation-intensive computer vision concepts, which are impractical to apply in a genetic 

algorithm. Gentropy uses a selection of efficient image analyses, which evaluate basic image attributes, such as colour, 

shape and smoothness. Complex analyses, from computer vision research for instance, would result in more accurate 

evaluations of images, but a serious price would be paid in run-time speed. 

4.2.1 Colour Direct Matching 

Colour direct (CDIR) is the simplest matching operation. CDIR adds the colour similarities of each pixel in the 

two images and then divides by the number of pixels per image. It uses colour similarity, a measure of the distance 



Wiens & Ross Page 8 12/08/2004 

between two colours in RGB space. The distance between two RGB colours C1 and C2, where C1 = (r1,g1,b1) 

and C2 = (r2,g2,b2), is given by: 

222 )21()21()21()2,1( bbggrrCCdist −+−+−=  

The distance is divided by the square root of 3 (the maximum possible distance within the cube) and subtracted from 1 so 

that the similarity value, sim(C1,C2), ranges between 0 and 1, with 1 representing a colour match. Then, the value is 

squared in order to exaggerate small differences in similar colours. 

2))3/)3,1((1()2,1( CCdistCCsim −=

Table 4 shows some example colour similarities. 

4.2.2 Colour Histogram Matching 
 

Unlike CDIR, colour histogram (CHIST) is not concerned with the colour’s position within the image. It 

creates colour histograms from the two quantized images being compared and then finds the histogram distance. 

Let i be an index into the two histograms (hist1 and hist2), representing a quantized colour. The values of 

hist1iand hist2i hold the frequency of quantized colour i within their respective images. The distance for index i 

is given by: 

disti = ⏐hist1i-hist2i⏐ 

CHIST returns the histogram distance, which is the sum of all disti divided by 2. 

4.2.3 Colour Histogram Quadratic Matching 

CHISTQ adds colour similarity to the calculation above in order to find the quadratic histogram distance. This 

method is used in QBIC systems like VisualSEEk [15].  

Let i and j be indexes into the two histograms (hist1 and hist2), representing quantized colours whose 

frequencies the histograms measure. The similarity between the quantized colours, represented by the histogram indexes 

i and j is given by sim(i,j). The distance between these two indexes is given by: 

dist(i,j) = ⏐hist1i-hist2i⏐ * sim(i,j) * ⏐hist1j-hist2j⏐ 
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The colour histogram quadratic distance is summed for all of the possible combinations of i and j (depending on the 

histogram size), in order to obtain an overall measure of histogram difference. Although this computation is somewhat 

expensive, it allows for the testing of colour closeness, as opposed to merely considering exact colour matches. 

4.2.4 Wavelet Analysis 

The wavelet (WAV) test compares the shape of two images. It creates a frequency image using the colour 

histogram of the quantized image. Colours with low frequency, as determined by the histogram, are replaced with dark 

greys, while frequent colours are assigned lighter greys. The result is a grey image with the same shape as the original 

colour image, but the specific colours are removed. This frequency image can then be used to match shape, without 

regard to the actual colours involved. 

The details of wavelet processing are beyond the scope of this paper; see [16] for an in-depth discussion. WAV 

uses a basic Haar wavelet decomposition, where each row and then each column in the image is recursively compressed 

using an averaging and differencing operation. Next, a similar decomposition is performed on each column in the image. 

Finally, all but the most positive and the most negative values (coefficients) in imag are truncated (set to zero). Wavelet 

analysis is very useful because its shape matching precision is adjustable by specifying the number of coefficients to be 

kept after truncation. The result of this procedure is a wavelet image of the most significant coefficients, either positive 

or negative, represented as white or black pixels, respectively. The final step is the comparison of two wavelet images by 

matching the positions of the white and black pixels.  

Table 5 shows some example wavelet representations. Notice that the examples share a few coefficients (white 

or black dots in the same position) but they are quite different. 

4.2.5 Smoothness Histogram Matching 

Smoothness histogram (SHIST) matches smoothness or contrast by generating a smoothness image, consisting 

of grey colours indicating the deviation of each pixel from its eight neighbours. Colour similarities between the particular 

pixel and its surrounding pixels are averaged to find a local deviation measure. If a pixel is very similar to its neighbours, 

it will have a dark grey in the smoothness image, whereas light colours indicate high contrast. The darker the grey, the 

smoother the area around the pixel. These grey values make up a smoothness image (see Table 6). Then, SHIST creates 

a histogram and the distance between two such histograms provides the smoothness measure. Review CDIR and CHIST 

for detailed descriptions of colour similarity and histogram distance.  
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Note that this technique may be used to compare edges by matching two smoothness images directly. It may be 

useful for target images with many edges. 

5 GENETIC PROGRAMMING SYSTEM 

Gentropy uses the strongly-typed lil-gp kernel, a GP system written in the C programming language [17]. Table 

7 shows several lil-gp parameters. The maximum nodes parameter refers to the approximate maximum number of 

operators permitted in a texture formula, while maximum depth indicates the maximum level of nesting within a 

formula. The initial random population is constructed using a half-and-half algorithm [5], in which the formulas have 

depths evenly distributed between 2 and 6. There is a 90% chance that crossover will be used during reproduction, and 

10% chance that mutation is applied. Fitness-proportional selection is done using tournament selection: 5 individuals are 

selected from the population at random, and the one with the best fitness is the ‘selected’ individual to be used for 

reproduction. Evolution stops when the best fitness of this subpopulation is greater than some threshold value (set 

extremely high so unlikely to happen), or 100 generations has been reached.  

Island model GA’s are those which use separate subpopulations or demes during evolution. Subpopulations are 

often useful in GA evolution, as they prevent premature convergence by retaining genetic diversity within each separate 

subpopulation. In addition, each subpopulation can use its own fitness criteria, thereby contributing specific desirable 

characteristics to the overall evolutionary process.  Subpopulations are particularly useful in multi-objective search 

problems as performed with Gentropy. Without subpopulations, problems arise when combining several feature tests 

together. For example, a texture with a high fitness score for colour matching may not necessarily have a good shape 

score. Evolution may try to find the highest possible colour score, without improving the shape fitness. Adding these 

fitness scores together equally — trying to search in various directions at once — may result in the cancelling of their 

effects. Hence subpopulations are useful in permitting different populations to concentrate on various features, which are 

then combined elsewhere. This attempts to find as many good examples of different features as possible. One 

subpopulation can be specialized to search for textures with good colour characteristics, while another subpopulation 

searches for textures with good shape. These individuals are then exchanged with the main subpopulation, which 

measures both attributes. Then, some of the exchanged textures should be useful to the search for a texture with good 

colour and shape. 
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 Subpopulations in Gentropy may be given their own particular fitness functions with unique feature tests and 

weights. Complex topologies may be designed where several subpopulations, each with different but related fitness 

functions, exchange individuals with each other. Figs. 2, 3, and 4 show subpopulation architectures used in the 

experiments in Section 6. Each node in the graph denotes a subpopulation, and the arrows indicate the paths of migration 

for shared individuals. The highlighted subpopulation at the top of the graph is the “main” subpopulation from which 

solution textures are obtained. The values in each node denote the weight of that particular feature test used in deriving 

an overall fitness score within that population. For example, in Fig. 2, the subpopulation with “WAV=1.0” indicates that 

100% of the fitness score is composed of the wavelet analysis. Each subpopulation evolves separately, and exchanges 5 

individuals with another subpopulation at an interval of 10 generations. This provides each subpopulation with a regular 

injection of fresh, hopefully useful, textures.  

Table 8 lists some image processing parameters specific to Gentropy. Colour and shape matching precision is 

adjustable by specifying how many greys, colours and wavelet coefficients are to be kept after quantization or truncation. 

Recognize that setting these values too low will likely cause very different images to be treated as similar. On the other 

hand, setting these values too high retains too much colour and shape information, and this increases evaluation time 

because the fitness function looks for a near exact match to the target image. Although the evaluation size of the 

generated images is equal to the target size, the final image size may be much larger. The target images are 50 by 50 

pixels, which means that 2500 pixels are evaluated by the fitness function for each individual. Of course, the user is 

always free to use different coordinate ranges when applying evolved textures.  

Gentropy allows the use of multiple target images. It is up to the user to specify which features are desirable in 

each target and the weight they are given. This removes the need for the user to find one target image that contains all 

desired criteria in the correct proportions. Furthermore, this allows the results of previous runs of the program to be used 

together as targets, seeding subsequent runs with appealing textures. This should result in a combination of features from 

the interesting textures in the final image. 

6 RESULTS  

Some example results of Gentropy experiments are in Tables 9, 10, and 11. Table 9 uses a four-subpopulation 

arrangement shown in Fig. 2, Table 10 uses the seven-subpopulation architecture in Fig. 3, and Table 11 uses the three 

subpopulations in Fig. 4. Three separate runs are shown for each experiment. The “solution image” is the texture 



Wiens & Ross Page 12 12/08/2004 

generated by best texture formula discovered in the run, and its output is shown as a 50 by 50 pixel image used during its 

evaluation. By default, Gentropy uses the coordinate range of -1 to 1 about the origin for the x and y positions when 

evaluating the solution image. Note that evaluating about the origin like this lends bias towards texture formulae which 

generate patterns symmetric about the origin and x and y axes. The “expanded coordinates” texture is the image 

produced by the same solution texture formula, but for a coordinate range of –10 to 10 for x and y.  This expanded 

texture was not subjected to feature analyses during evolution. 

The fitness scores denote the results of feature tests. The best fitness scores fall within the 60% to 78% range. A 

near perfect score is not necessary in order to gain the visual effects desired. If there is more than one feature test for the 

subpopulation, they are given equal weight in this experiment. Although shape matching is the most difficult analysis to 

undertake, it is possible to compensate for this by increasing its weight in the fitness function: by giving WAV a higher 

priority, evolution will concentrate on shape and thereby allow more colour variation in comparison to the target. Note 

that the experiment in Table 10 using target image prim uses CDIR (direct colour matching) in place of the SHIST 

(smoothness) feature test. 

The runs in Tables 10 and 11 use single target images. Their subpopulation architectures are designed to 

effectively search for various features of the targets, hopefully resulting in solutions that effectively encapsulate all of the 

features to varying degrees. The four-subpopulation arrangement (Fig. 2) has three subpopulations, each of which pass 

their best five textures to the main subpopulation every ten generations. These immigrant textures are replaced with five 

random textures. The main subpopulation has feature tests for colour (CHISTQ), shape (WAV) and smoothness (SHIST), 

while each of the lower three subpopulations are concerned with only one feature. The seven-subpopulation strategy 

(Fig. 3) is more complicated. It has three intermediate subpopulations. They have two feature tests and exchange their 

five best textures with the main subpopulation every ten generations and receive five random ones in return. The lower 

three subpopulations are concerned with a single feature and exchange textures with two of the intermediate 

subpopulations. 

The resulting evolved textures in Tables 10 and 11 are usually faithful to the target textures images. Note that, 

in all these results, the intention is not to derive an identical texture as the target, but rather, a texture similar in 

characteristics. The runs using target image “stripe” almost always evolve textures that are monochromatic stripes. Note 

that the wavelet analyses does not account for vertical or horizontal aspects of shape, so a few solutions have vertical 

stripes, unlike the target image. The “splot” runs also generate textures with similar colour and shape features of the 
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target. The results for “prim” are especially impressive, as the solution images often reproduce the same quadrant of 

primary colours as found in the target. Note that the expanded coordinate view of the solution textures is often very 

different than the evaluated image. This occurs because the fitness evaluation is only performed on the constrained 

coordinate system shown in the solution image column. When the texture formula is applied elsewhere in the coordinate 

system, as in the expanded images, new areas of the texture space are being explored, which were not subject to 

evaluation during evolution.  

Table 11 shows some results from runs in which multiple target textures are used. The subpopulation 

architecture used for these runs is the 3-subpopulation architecture in Fig. 4. Here, two subpopulations are specialized to 

evaluate each target image separately. The subpopulation labeled “splot” uses that target image for colour analyses, 

while the other labeled “stripes” performs a wavelet (shape) analysis on the stripe target. Hence the stripe image will 

determine shape features, while splot is used for colour characteristics. The main subpopulation applies colour and shape 

analyses in equal weights, but again applying the colour score relative to splot, and wavelet score to stripes. As a result, 

it is clear that the solution textures tend to have colours similar to those in the splot image, and stripe shapes akin to the 

stripes image. 

All the experiments were run on a 16-CPU Silicon Graphics Origin server. Each CPU is a 250 MHz MIPS 

R10000. Typically, all runs for a given experiment were executed concurrently on separate processors. The average 

processing time for a typical run is about 52 hours. 

7 RELATED WORK 

 
Genetic algorithms have been applied elsewhere to the problem of procedural texture generation [6, 7, 8, 9, 10]. 

Most of these applications use supervised evaluation. The user is presented with a small population of images using a 

real-time display and asked to choose several for breeding. Thus the user is the fitness function. Karl Sims’ LISP-based 

system is the inspiration for Gentropy’s image representation and function set [7].  Most of the operations in Gentropy’s 

function set are based on the mathematical and image-processing functions described in Sims’ paper. The Gaia system 

has similar mathematical operators to Gentropy, as well as the concept of an adjustable coordinate domain in the image 

evaluation process [8]. Gaia stores both a formula and a domain, which determines where the formula is evaluated, for 

each individual in order to generate an image. Steven Rooke’s system contains functions from the real and complex 
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planes [6]. Evolution is stopped when the user sees a desirable image, and the formula is saved in “digital amber” for 

seeding later runs of the program. In this way, the artist adds his/her creativity to the process. 

The evolutionary art application closest in functionality to Gentropy is Aladdin Ibrahim’s Genshade [10]. Both 

Gentropy and Genshade use unsupervised evolution, and both use such analyses as wavelet comparison. Genshade’s 

target language is high-level Renderman shaders, denoted as connected graphs. This is essentially a GP denotation that 

uses a high-level texture generation library as operators. Gentropy’s target language is considerably more rudimentary. 

This points to a philosophical difference between the two research projects. A goal of Gentropy is to investigate how 

effectively a texture can be evolved for arbitrary complex target textures, using a basic set of mathematical and noise 

operators. On the other hand, it appears as though Genshade is most effective at evolving Renderman shaders using 

target textures generated by Renderman itself. It is unclear whether Genshade can effectively evolve Renderman shaders 

for arbitrary texture targets. Likewise, Gentropy would have difficulty reproducing the same quality of solutions for 

Renderman-generated target textures that Genshade enjoys with its Renderman shader language.  

Another technical difference between Gentropy and Genshade is that Gentropy supports more robust, 

customizable user control over texture evaluation. Both systems accommodate multiple target images. However, 

Gentropy permits the user to assign specific suites of feature tests and weights to different target images. The use of user-

defined subpopulation topologies, and corresponding evaluation criteria, is also unique to Gentropy. This makes 

Gentropy a more robust environment for multi-objective feature-based evolution than Genshade. 

8 CONCLUSIONS 

 
This research successfully used genetic programming to perform automatic texture generation. Given the 

difficulty of automating “aesthetic sensibilities”, Gentropy’s use of a user-selectable set of image analysis fitness 

functions was shown to be effective. Gentropy takes an unsupervised approach, where a fitness function judges the 

similarity of generated images to one or more targets. Gentropy allows any image to be used as a target, including both 

images generated by the program and images from other sources (scanned, drawn or generated by another program).  In 

some cases, the simplest strategy, with a single subpopulation and feature test, is useful. However, more complex 

strategies, such as those that use several weighted feature tests, allow the user to better specify his/her preferences in the 

final texture. 
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Although several feature tests and subpopulation topologies were tried, many more are possible. For example, 

more sophisticated edge and texture analysis tests may prove useful. However, more complex analyses will result in 

computational overhead, which is detrimental to GA efficiency. Alternatives to the use of fitness weights should be 

investigated, such as the use of dynamic weights that change during evolution, and the averaging of different feature test 

scores. One method of increasing Gentropy’s speed is through the use of multi-threaded GP. Each subpopulation could 

run on one or more processors and truly evolve in parallel. Should the program be able to run in real-time, more user 

interaction would be possible.  

At the present time, Gentropy evaluates a small portion of the texture. Often the rest of the texture shares 

features with this portion. The fitness function may operate by adjusting the domain, evaluating the texture at different 

places in two-dimensional space or at different resolutions (dimensions) to see how it matches the target. Gentropy could 

be enhanced by expanding its set of operators, for example, with fractals, complex arithmetic, and perhaps high-level 

shaders such as used in Genshade [10]. 
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APPENDIX A: SOME EVOLVED TEXTURE FORMULAS 

Example 1: 
 
RESULT #  TARGET  FITNESS 
3 
 
(Table 9)  stripes 0.5738 

FORMULA 
kaleid(max(max(log(Y), 
               turbflow(-0.95,Y,0.86)), 
           lum(COLGRAD)), 
       forv(cloud(cloud(log(max(sin(X), 
                                cos(turbflow(-0.95,Y,0.86)))), X, Y, 
                        avg(X, 0.05)), 
                  lum(COLGRAD), 
                  max(lum(marble(X, X, (-0.68,-0.13,0.83))), 
                      diff(Y, 
                           avg(min(Y, Y), 
                               avg(min(Y, Y), 
                                   turbflow(turbflow(-0.95,Y 0.86),Y,0.86))))), 
                  pow(noise(pow(X, 
                                avg(sin(X)-X, 0.86)-X)-X, -0.36), 
                      lum(COLGRAD))))) 
 
Example 2: 
 
RESULT #  TARGET  FITNESS 
1 (Table 9)  splot  0.6735 
 
FORMULA 
rgb(turbflow(mod(X, X), X, 
             if(cos(sin(sin(sin(Y)))), X, 0.82)) 
    + not(turbflow(if(0.08, 
                      Y/Y, 
                      max(0.76, sin(Y))), 
                      lum(warpabs(0.69, 0.76, (0.58,-0.04,-0.79))), X)), 
    sin(sin(Y)) 
    + turb(cos(sin(sin(sin(Y)))) 
           * noise(not(turbflow(mod(X, sin(Y)), 
                                lum(warpabs(0.09, X, (0.58,-0.04,-0.79))) 
                                cos(0.52))), 0.69), 
           not(0.08)), 
    turbflow(mod(X, mod(X, log(Y))), 
             min(cos(mod(X, 
                         mod(X, Y/Y))), 0.82), 0.64)) 
 
Example 3: 
 
RESULT #  TARGET FITNESS  
1 (Table 10) prim   0.7036 
 
FORMULA 
rgb (diff(X, X) 
      - pow((diff(X, Y) * Y), 
             max(max(diff(X, X), log(Y)), 
                 log(X)) 
                 + diff(X, Y) * Y)) 
             * (not(pow(diff(X, Y) * Y,  
                         log(X))) 
                + not(pow(max(diff(X, X), 
                              log(Y)) * Y, 
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                          log(X)))), 
      sin(min(pow(diff(min(Y, X), X), 
                  wchn(Y, (-0.10,-0.01,0.45))), 
              log(avg(0.41, Y)))), 
      pow(if(max(log(0.12), log(min(Y, X))), 
             mod(min(Y, X), 
                 not(wchn(X, (-0.60,-0.20,0.30)) 
                     * X * diff(X, X))), 
             diff(X,Y) * Y + X), 

                log(0.12)))
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Initialize population with random individuals. Assign fitness values to all individuals. 

• Repeat until solution found or maximum number of generations processed: 

o Repeat until new population created: 

 Use fitness proportional selection to select 2 individuals.  

 Apply crossover to generate their offspring.  

 Apply mutation to offspring. 

 Assign fitnesses to offspring and insert into new population. 

 Update generation counter. 

 

 

Fig. 1: Genetic algorithm 
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Table 1: Texture examples 

IMAGE TEXTURE FORMULA 

 

rgb(Y*X, noise(Y, -0.71), min(Y, 0.25)) 

 

rgb(mod(turbflow(Y,X,X), sin(X)),   

lum(marble(0.94, -0.78, (-0.46,0.50,-0.63))),  

turb(chn(COLGRAD), cos(-0.24))) 

 

rgb((wchn(Y*X,COLGRAD)+Y*X)/turbflow(noise(noise(

Y, X-Y), cloud(turbflow(X-Y, mod(X,Y), Y/(X-Y)), 

Y/X, diff(sin(X), cos(noise(Y,Y))), noise(Y,Y))), 

lum((-0.10,0.34,0.98)), Y/wchn(X,COLGRAD)), 

noise(noise(Y,Y), cloud(diff(sin(X), cos(noise( 

Y,Y))), diff(0.94,0.76), mod(X,Y), noise(cos((X-

Y)/X), cloud(Y/X, Y/X, sin(X), noise(Y,Y))))), 

cos(Y*X)) 
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Table 2: Noise examples 

Noise Turb Turb Flow Cloud Marble 
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Table 3: Feature tests 

TEST DESCRIPTION 

Colour Direct (CDIR) Matches colour similarities pixel by pixel 

Colour Histogram 

(CHIST) 

Matches colours, position irrelevant 

Colour Histogram 

Quadratic (CHISTQ) 

Matches similar colours, position irrelevant 

Wavelet (WAV) Matches shape using wavelet theory 

Smoothness 

Histogram (SHIST) 

Matches colour smoothness (contrast), position 

irrelevant 
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Table 4: Similarity measure examples 

C1 C2 SIM(C1,C2) 

Black (0,0,0) White (1,1,1) 0 

Black (0,0,0) Black (0,0,0) 1 

White (1,1,1) White (1,1,1) 1 

Red   (1,0,0) Blue  (0,0,1) 0.03 

Blue  (0,0,1) Grey (0.5,0.5,0.5) 0.25 

Red   (1,0,0) Darker Red  (0.8,0,0) 0.78 
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Table 5: Example quantized, frequency and wavelet images 

QUANTIZED FREQUENCY WAVELET 
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Table 6: Sample quantized and smoothness images 

QUANTIZED SMOOTHNESS
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Table 7: GP parameters 

PARAMETER VALUE 

Maximum nodes 100 

Maximum depth 50 

Initialization method half and half 

Initial depth 2 to 6 

Crossover selection tournament, size=5 

Crossover rate 0.9 

Mutation selection tournament, size=5 

Mutation rate 0.1 

Population size 5600 

Number of subpopulations 1, 3, 4 or 7 

Number of exchanges 0, 2, 3 or 9 

Subpopulation exchange interval (in generations) 10 

Exchange count (number of individuals) 5 

Exchange selection methods best and random 

Maximum generations 100 
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Table 8: Gentropy-specific parameters 

PARAMETER VALUE 

Threshold (stop when fitness >) 0.99 

Number of quantized greys 25 

Number of quantized colours 1000 

Number of wavelet coefficients used 50 

Evaluation/Target width and height 50 

Final image width and height 500 

Number of target images 1 or 2 
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CHISTQ=0.33,WAV=0.33,SHIST=0.33

CHISTQ=1.0 WAV=1.0 SHIST=1.0

 

 
Figure 2: Four subpopulation topology 
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CHISTQ=0.33,WAV=0.33,SHIST=0.33

CHISTQ=0.5,WAV=0.5

CHISTQ=0.5,SHIST=0.5

WAV=0.5,SHIST=0.5

CHISTQ=1.0 WAV=1.0 SHIST=1.0

Figure 3: Seven subpopulation topology 
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CHISTQ=0.5,WAV=0.5

CHISTQ=1.0(splot) WAV=1.0(stripes)

 

Figure 4: Three subpopulation topology 
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Table 9: Runs with 4 subpopulations 

Target 

 

Fitness 

Score 

Solution 

Image 

Expanded 

Coordinates 

   

 

0.6576 

  
stripes 0.5374 

  
 

 

0.5738 

  

 

0.6735 

  

splot 0.6706 

  
 0.6772 

  

 

0.7260 

  

prim 0.7304 

  
 0.7226 
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Table 10: Runs with 7 subpopulations 
 

Target Fitness 

Score 

Solution 

Image 

Expanded 

Coordinates 

 

 

0.5967 

  
stripes 0.5827 

  
 

 

0.6241 

  

 

0.6889 

  

splot 0.6582 

  
 0.6550 

  

 

0.7036 

  

prim 0.7033 

  
 0.7110 
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Table 11: Runs with multiple targets 
 

Targets 

 

Fitness 

Score 

Solution 

Image 

Expanded 

coordinates 
 

 

0.7341 

  
(i) stripes 0.7730 

  

 

0.7286 

  

(ii) splot    
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