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Abstract

Dicomplemented lattices were introduced as an abstraction of Wille’s concept algebras which provided
negations to a concept lattice. We prove a discrete representation theorem for the class of dicomplemented
lattices. The theorem is based on a topology free version of Urquhart’s representation of bounded general
lattices.

1 Introduction

In philosophical logic a concept is characterized by its extent and intent. The extent of a concept C mean-
ingful in a universe of discourse U is a subset e(C) of U consisting of those objects which are the instances
of the concept. The intent of a concept is the set i(C) of properties which qualify the objects of e(C) as
instances of the concept. In [13] the notion of Dedekind cuts used in the definition of real numbers was
generalized with the intuition that, when considered on a lattice, the cuts represent concepts. More precisely,
a cut is a pair hA,B)i of subsets of a lattice such that there is a concept C with e(C) = A and i(C) = B.
Concept lattices were defined endowed with a negation and a representation theorem was proved. In [6]
an abstract algebraic representation of concepts and their negations is presented within the framework of
dicomplemented lattices. The lattices are endowed with two negations; details can be found in Section 5.
When considered on a distributive lattice, they are the counterparts to the Heyting and Brouwer negation,
respectively, see [11].
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Since the early 20th century a variety of logical systems whose languages included the operators turning
propositions into the opposite propositions have been a subject of extensive studies. Helena Rasiowa con-
tributed substantially to that line of research. In her book “An Algebraic Approach to non-Classical Logics”
[10] a survey of classes of systems with negations and their classification is provided. Dicomplemented
lattices are a valuable enlargement of that classification.

In the present paper we prove a discrete representation theorem for the class of dicomplemented lattices.
The definition of representation algebra does not involve any topology and therefore it is referred to as a
discrete representation. The theorem is based on a discrete version of Urquhart’s representation of bounded
general lattices [12].

It is well known that in case of distributive lattices there are discrete representation theorems both for the
lattices and the lattice frames, e.g. discrete versions of the Stone and Priestley dualities. In this paper we
show that there are Urquhart general lattice frames (doubly ordered sets) which do not admit a representation
theorem for frames.

2 First definitions and notation

A two sorted frame is a triple hX ,Y,Ri where X ,Y are nonempty sets and R ✓ X ⇥Y is a binary relation
among elements of X and Y . Two sorted frames are called polarities in [1] and formal contexts in [13]. If
X = Y , we usually just write hX ,Ri and speak of a frame. We let R ˘ be the relational converse of R, i.e.
R˘ = {hy,xi 2 Y ⇥X : xRy}. If x 2 X , then R(x) = {y 2 Y : xRy}; R˘(y) is defined analogously.

Common operators on the powerset of frames are

hRi(Z) = {x 2 X : R(x)\Z 6= /0} Possibility operator,
[R](Z) = {x 2 X : R(x)✓ Z} Necessity operator.

For useful facts about these operators we invite the reader to consult [9, Section 1.8]. In particular, we shall
use

hRi(Z) =�[R](�Z), (2.1)
hR;Si(Z) = hRihSi(Z) and [R;S](Z) = [R][S](Z). (2.2)

If f : X ! Y is a function, ran f = { f (x) : x 2 X} is the range of f .

Throughout, hL, ·,+,0,1i is a bounded lattice, possibly with additional operators. The set of all proper
filters, respectively, ideals, of L is denoted by F , respectively, by I . Furthermore, " M = {a 2 L : (9b)[b 2
M and b  a]}; the set # M is defined dually. If M = {a} we usually just write " a instead of " {a}. A subset
M of L is called join dense if every nonzero element of L is a join of elements of M; meet density is defined
dually. The filter of L generated by M is denoted by [M]filt.

A closure operator on a partially ordered sethP,i is a mapping f : P ! P such that for all a,b 2 P

1. a  f (a), (Extensive)

2. a  b implies f (a) f (b), (Isotone)
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3. f ( f (a)) = f (a)). (Idempotent)

a 2 P is called closed (with respect to f ) if a = f (a). An interior operator on hP,i is defined dually. In the
case of h2X ,✓i the smallest closed element is f ( /0) and the largest closed element is X .

Let hP,i and hQ,�i be partially ordered sets. A Galois connection is a pair of functions f : P ! Q, g :
Q ! P such that for all a 2 P,b 2 Q

b � f (a)() a  g(b). (2.3)

It is well known that both f and g are antitone (order reversing).

There are close connections among closure operators, Galois connections and complete lattices. In particu-
lar, each closure operator on some 2X induces a complete lattice; G. Birkhoff [1, p. 49] credits this result to
E.H. Moore [7, pp 53–80]:

Theorem 2.1. [1, Ch IV, Theorem 1] Let f be a closure operator on the ordered powerset h2X ,✓i of some
nonempty set X, and let C be the collection of closed subsets of X. Then, C can be made into a complete
lattice with the operations

Â
i2I

Ai = f

 
[

i2I

Ai

!
, (2.4)

’
i2I

Ai =
\

i2I

Ai. (2.5)

Theorem 2.2. 1. [4, Theorem 4] Let hP,i be a partially ordered set and c be a closure operator on P.
Then, there are an ordered set hQ,�i and a Galois connection h f ,gi such that c(a) = g( f (a)) for all
a 2 P.

2. [8, Theorem 2] If h f ,gi is a Galois connection between the partially ordered sets hP,i and hQ,�i,
then g� f : P ! P is a closure operator.

3 Polarities and concept lattices

A sufficiency operator on L is a function f : L ! L for which for all a,b 2 L,

f (0) = 1, Co–normal (3.1)
f (a+b) = f (a) · f (b) Co–additive. (3.2)

A dual sufficiency operator is a function g : L ! L for which for all a,b 2 L,

g(1) = 0, (3.3)
g(a ·b) = g(a)+g(b). (3.4)

These operators were first considered in a logical setting in [5].

It is easy to see that sufficiency operators and dual sufficiency operators are antitone.
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Define functions [[R˘ ]] : 2X ! 2Y , [[R]] : 2Y ! 2X by

[[R˘ ]](V ) = {y 2 Y : V ✓ R˘(y)]}, (3.5)
= {y 2 Y : (8x 2 X)[x 2V ) xRy]}

[[R]](W ) = {x 2 X : W ✓ R(x)}, (3.6)
= {x 2 X : (8y 2 Y )[y 2W ) xRy]}.

These mappings are complete sufficiency operators. They are called the polars of hX ,Y,Ri by Birkhoff [1,
p. 56], and derivation operators by Wille [13].

Theorem 3.1. [1, p. 54] Let A ✓ X ,B ✓ Y .

1. The pair h[[R˘ ]], [[R]]i forms a Galois connection.

2. The correspondences A 7! [[R ˘ ]](A) and B 7! [[R]](B) are complete dual isomorphisms between the
complete lattices of [[R]][[R˘ ]] – closed subsets of 2X and [[R˘ ]][[R]] – closed subsets of 2Y .

To simplify notation we shall write fR for [[R]][[R˘]] and gR for [[R˘]][[R]]. We call the complete lattice of fR
– closed subsets of 2X the B – complex algebra of the polarity hX ,Y,Ri, and denote it by CmBhX ,Y,Ri.
Birkhoff’s construction is the basis of formal concept analysis introduced by Wille [13]. A formal concept
of hX ,Y,Ri is a pair hA,Bi 2 2X ⇥2Y such that [[R˘]](A) = B and [[R]](B) = A. The set of all formal concepts
of hX ,Y,Ri is denoted by Con(X ,Y,R).

Theorem 3.2. [13] Let hX ,Y,Ri be a frame. Con(X ,Y,R) is a complete lattice, called the concept lattice of
hX ,Y,Ri under the lattice ordering hA,Bi  hA0,B0i if and only if A ✓ A0.

Conversely, a complete lattice M is isomorphic to Con(X ,Y,R) if and only if there are mappings g : X !
M, µ : Y ! M such that rang is join dense, ran µ is meet dense, and xRy if and only if g(x)  µ(y) for all
x 2 X ,y 2 Y .

It is not hard to see that the lattice Con(X ,Y,R) is isomorphic to the lattice of fR – closed sets of X and dually
isomorphic to the gR – closed sets of Y . Thus, the concept lattice of a frame is (isomorphic to) the complex
algebra of the polarity hX ,Y,Ri in Birkhoff’s sense.

4 Urquhart’s representation of lattices

In this section we briefly review the lattice representation of [12]. A doubly ordered set is a structure
hX ,1,2i such that 1,2 are quasiorders on X and

x 1 y and x 2 y imply x = y. (4.1)

If the relations are clear from the context we shall name a doubly ordered set just by its base set.

If Y ✓ X and i 2 {1,2}, we let #i Y and "i Y be the downset, respectively, the upset of Y with respect to i.
Define two mappings l,r : 2X ! 2X by

l(Y ) df
= {x :"1 x\Y = /0}, (4.2)

r(Y ) df
= {x :"2 x\Y = /0}. (4.3)
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l and r can be viewed as intuitionistic negations; for example, l(Y ) is the largest 1 – increasing subset of X
disjoint from Y . These can be written in modal form as

l(Y ) = [1](�Y ), (4.4)
r(Y ) = [2](�Y ). (4.5)

Y is called a stable set, if Y = l(r(Y )). The collection of stable sets is denoted by LX . Observe that

l(r(Y )) = l([2](�Y )) = [1](�[2](�Y )) = [1]h2i(Y ). (4.6)

Lemma 4.1. [12] Let (X ,1,2) be a doubly ordered set.

1. The mappings l and r form a Galois connection between the lattice of 1–increasing subsets of X and
the lattice of 2–increasing subsets of X.

2. If Y is 2 increasing, then l(Y ) is a stable set.

Thus, if Y is 1 increasing and Z is 2 increasing, then Y ✓ l(Z) if and only if Z ✓ r(Y ).

For Y,Z 2 LX let

Y _X Z df
= [1]h2i(Y [Z), (4.7)

Y ^X Z df
= Y \Z. (4.8)

Theorem 4.2. [12] The structure hLX ,_X ,^X , /0,Xi is a complete lattice.

We call this structure the Urquhart complex algebra of X , and denote it by CmU (X).

Next, we go from lattices to frames. A filter – ideal pair is a pair hF, Ii, where F 2F , I 2I , and F \ I = /0.
Define the component–wise quasiorders on the set of all filter – ideal pairs by

hF1, I1i �1 hF2, I2i
df() F1 ✓ F2, (4.9)

hF1, I1i �2 hF2, I2i
df() I1 ✓ I2, (4.10)

and let � be the intersection of �1 and �2. A filter – ideal pair is called a maximal pair, if it is maximal
with respect to �.

Lemma 4.3. Each filter – ideal pair can be extended to a maximal pair.

The collection of all maximal pairs is denoted by XL. To facilitate notation, if x = hF, Ii 2 XL, we let x1 = F
and x2 = I. Furthermore, if x,y 2 XL, we let x �i y if and only if xi ✓ yi. With these definitions hXL,�1,�2i
is a doubly ordered set, which we call the Urquhart canonical frame of L, denoted by CfU (L).

Theorem 4.4. [12] Let L be a lattice and define h : L ! 2XL by h(a) df
= {x 2 XL : a 2 x1}. Then h is a lattice

embedding into CmU CfU (L).
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Whereas every lattice can be embedded into the complex algebra of its Urquhart canonical frame, an anal-
ogous embedding for doubly ordered frames is not always possible, even on the set level: Suppose that
|X |� 2, 1 is the identity, and 2 is the universal relation. Clearly, hX ,1,2i is a doubly ordered frame.
Since 1 is the identity, [1](Y ) =Y for every Y ✓ X . If Y 6= /0 and y 2Y , then x 2 y for all x 2 X , since 2
is the universal relation. Hence, h2i(Y ) = X for every nonempty Y ✓ X . It follows that LX = {X , /0}, and
therefore, CfU CmU (X) = {h{X},{ /0}i}, which has only one element. Since |X | � 2, there is no injective
mapping X ! CfU CmU (X). Thus, we obtain the following theorem:

Theorem 4.5. If |X |� 2, there is a doubly ordered frame X which cannot be embedded into CfU CmU (X).

5 Concept algebras and dicomplemented lattices

Formal concept analysis is based on the formalization of the notion of concept. Concepts are considered as
basic unit of thought. They are determined by their extent and their intent. The extent consists of all objects
belonging to the concept while the intent is the set of all attributes shared by all objects of the concept. Each
of these sets (extents and intents) should uniquely define the corresponding concept. To develop a logic
based on concepts as units of thought, the logical operators need to be formalized appropriately.

The universe of discourse is a binary relation involving objects and attributes of interest. The set of concepts
of this context forms a complete lattice [13]. Towards developing a Boolean concept logic, the conjunction
was encoded by the meet and the disjunction by the join in the concept lattice. > corresponds to the top
element and ? to the bottom element of the concept lattice. To formalize negation we face the problem
that the complement of extents are not always extents, and idem for intents. Two options for negation were
considered:

• The first approach relaxes the definition of concept to accommodate the complement of extents/intents.
This leads to the notion of semi-, pre-, protoconcepts and double Boolean algebras [14].

• The second approach obtains the negations as concepts generated by the complement of the extents or
complement of the intents. This leads to concept algebras and dicomplemented lattices [14, 6].

Here we consider the second approach. If L= ConhX ,Y,Ri, and hA,Bi 2 L, we define mappings 4,5 : L! L
by

hA,Bi4 = h fR(�A), [[R˘ ]](�A)i, (5.1)

hA,Bi5 = h[[R]](�B),gR(�B)i. (5.2)

A concept algebra is a structure hL,+, ·,4,5,0,1i of type h2,2,1,1,0,0i which is isomorphic to a concept
lattice with the additional operations defined by (5.1) and (5.2).

Generalizing these structures, Kwuida [6] has introduced the following class of algebras: A dicomplemented
lattice1 (DL) is a structure hL,+, ·,4,5,0,1i such that 4,5 : L ! L are operators such that for all a,b 2 L,

1These are called weakly dicomplemented lattices in [6]; here we follow the original notation [14].
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a44  a, (5.3)

a  b ) b4  a4, (5.4)

a  (a ·b)+(a ·b4). (5.5)

a  a55, (5.6)

a  b ) b5  a5, (5.7)

(a+b) · (a+b5) a. (5.8)

Theorem 5.1. [14] Each concept algebra is a dicomplemented lattice.

Lemma 5.2. [3] The following are equivalent:

1. (5.6) and (5.7),

2. a  b5 () b  a5.

Similarly,

Lemma 5.3. The following are equivalent:

1. (5.3) and (5.4),

2. a4  b () b4  a.

Every bounded lattice can be made into a DL by defining

a4 =

(
1, if a 6= 1,
0, if a = 1,

(5.9)

a5 =

(
0, if a 6= 0,
1, if a = 0.

(5.10)

These are called trivial complementations.

Lemma 5.4. [6, 14] Let L be dicomplemented and a,b 2 L. Then, 44 is an interior operator and 55 is a
closure operator. Furthermore, for all a,b 2 L,

a+a4 = 1, a ·a5 = 0, (5.11)

04 = 05 = 1, 14 = 15 = 0, (5.12)

(a ·b)4 = a4+b4, (a+b)5 = a5 ·b5, (5.13)

a444 = a4 a5 = a555, (5.14)

a45  a44  a  a55  a54, a5  a4, (5.15)

a ·b4  b ) a  b, a  b+a5 ) a  b, (5.16)

a ·b = 0 ) a  b4 a+b = 1 ) a5  b, (5.17)

a ·a4 = 0 ) a = a44 a+a5 = 1 ) a = a55. (5.18)
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(5.12) and (5.13) show that 5 is a sufficiency operator and 4 is a dual sufficiency operator. Therefore, we
can replace (5.4) and (5.7), by the equations in (5.12) and (5.13). In particular, the class of dicomplemented
lattices is equational, and we denote it by D.

Let L be a DL. A proper filter F of L is called primary if a 2 F or a4 2 F for all a 2 L. A proper ideal I is
called primary if a 2 I or a5 2 I for all a 2 L. The set of all primary filters, respectively, primary ideals, is
denoted by FP, respectively, IP.

The following separation lemma and its corollary are decisive for the representation results based on Urquhart’s
representation:

Lemma 5.5. [6, Lemma 2.2.1] If F 2 F and I 2 I with F \ I = /0, then there are a primary filter F 0 such
that F ✓ F 0, and a primary ideal I0 such that I ✓ I0 and F 0 \ I0 = /0.

Proof. Let F 2 F and I 2 I such that F \ I = /0. Let K = {G 2 F : F ✓ G and G\ I = /0}. Since F 2 K
and every chain in K has an upper bound in K, it contains a maximal element F 0. Similarly, let I0 be an ideal
containing I and maximal with respect to I0 \F = /0; then F 0 \ I0 = /0. Assume that F 0 is not primary; then
there is some a 2 L such that a 62 F 0 and a4 62 F 0. Since F 0 is maximal disjoint to I, [F 0 [ {a}]filt \ I 6= /0
and [F 0 [{a4}]filt \ I 6= /0. Thus, there exist b,c 2 F 0 such that b ·a,c ·a4 2 I. Since F 0 is a filter, b · c 2 F 0,
and since I is an ideal we may suppose that b = c. Therefore, b · a+ b · a4 2 I. (5.5) now implies b 2 I,
contradicting that F 0 \ I = /0. Dually, it can be shown that I0 is primary.

Corollary 5.6. If hF, Ii is a maximal pair (in Urquhart’s sense), then both F and I are primary.

Proof. Let hF, Ii be a maximal pair. By Lemma 5.5 there is a filter ideal pair hF 0, I0i such that F ✓ F 0 2 FP
and I ✓ I0 2 IP. The maximality of hF, Ii implies that F = F 0 and I = I0.

For later use, we introduce the following convention: If M ✓ L, we let M5�1 = {a : a5 2 M} and M4�1 =
{a : a4 2 M}.

Lemma 5.7.

1. Let F be a proper filter. Then, F5�1
is a proper ideal of L disjoint from F.

2. Let I be a proper ideal. Then, I4
�1

is a proper filter of L disjoint from I.

Proof. 1. If 1 2 F5�1 , then 0 = 15 2 F , contradicting that F is proper. If a 2 F5�1 and b  a, then a5 2 F
and a5  b5, since 5 is antitone. If a,b 2 F5�1 , then a5,b5 2 F , and thus, a5 · b5 2 F since F is a
filter. By (5.13), a5 ·b5 = (a+b)5, showing that a+b 2 F5�1 . If a 2 F and a 2 F5�1 , i.e. a5 2 F , then
a ·a5 = 0 2 F , contradicting that F is proper.

2. This can be shown dually.
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6 A discrete representation for DLs

We are now going to establish the discrete representation theorem for DLs, and consider the reducts hL,5i
and hL,4i separately. A 5 – frame is a structure hX ,1,2,Ci such that hX ,1,2i is a doubly ordered
set, and C is a binary relation on X satisfying the following conditions:

FC1. (8x,y,z)[xCy and y 2 z ) xCz], C ; 2 ✓ C,

FC2. (8x,y)[xCy ) (9z)(x 1 z and yCz)] C ✓ 1 ; C ˘.

FC3. (8x,y,z)[x 2 y and x 2 z ) zCy)] �2 ; 2✓C.

The class of all 5 – frames is denoted by Frm5.

Theorem 6.1. Let X = hX ,1,2,Ci be a 5 – frame, and hLX ,_X ,^X , /0,Xi be its Urquhart complex
algebra. Furthermore, for Y 2 LX set

Y5X df
= {x 2 X : (8y)[xCy ) y 62 Y ]}= [C](�Y ). (6.1)

Then, Y5X 2 LX and hLX ,_X ,^X ,5X , /0,Xi satisfies (5.6) – (5.8).

Proof. The frame conditions and the definition of 5X were presented in [3]; here we give a simpler proof.

Y5X 2 LX : Since [1]h2i is a closure operator, we have Y5X ✓ [1]h2i(Y5X ), and only the reverse
inclusion needs to be proved. Let x 2 [1]h2i([C](�Y )), and assume that C(x) 6✓ �Y , i.e. that there is
some y 2 Y and xCy. By FC2, there is some s such that x 1 s and yCs.

Now, x 2 [1]h2i([C](�Y )) implies that "1 x ✓ h2i[C](�Y ), and thus there is some t such that s 2 t and
C(t)\Y = /0. From yCs and s 2 t we obtain y(C ; 2)t, and now FC1 implies that yCt. Using FC2 again,
it follows that y(1 ; C ˘)t, and thus, there is some z such that y 1 z and tCz. Since Y 2 LX it is 1 closed,
and thus, z 2 Y . This contradicts C(t)\Y = /0.

(5.6): First, note that

Y5X5X = [C](�Y5X ) = [C](�[C](�Y )) = [C]hCi(Y ) = {x : (8y)[xCy ) (9z)(z 2 Y and zCy}.

Now, suppose that x 2 Y , and xCy. By FC2, there is some z such x 1 zC ˘ y. Since Y 2 LX , it is "1
increasing, and thus, x 2 Y and x 1 z imply z 2 Y . The claim now follows from yCz.

(5.7): If Y ✓ Z ✓ X , then �Z ✓�Y . Since [C] is isotone, we obtain [C](�Z)✓ [C](�Y ).

(5.8): Let Y,Z 2 LX ; we need to show that (Y _X Z)\ (Y _X Z5X ) ✓ Y . Set M = (Y _X Z)\ (Y _X Z5X ) =
[1]h2i(Y [Z)\ [1]h2i(Y [ [C](�Z)). Now,

M = [1]h2i(Y [Z)\ [1]h2i(Y [ [C](�Z)),

= [1](h2i(Y [Z)\h2i(Y [ [C](�Z))), [1] distributes over \,
= [1][(h2iY [h2iZ)\ (h2i(Y )[h2i[C](�Z))] h2i distributes over [,
= [1][h2iY [ (h2iZ \h2i[C](�Z))], [ distributes over \
= Y [ (h2iZ \h2i[C](�Z))], Y = [1]h2i(Y ).

We are done if we can show that h2iZ\h2i[C](�Z)) = /0, since Y = [1]h2iY . Assume that x 2 h2iZ
and x 2 h2i[C](�Z)). Then, there is some y 2 Z such that x 2 y; also, there is some z such that x 2 z and
C(z)\Z = /0. By FC3 we have zCy, contradicting C(z)\Z = /0.
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If X is a 5 – frame, its complex algebra is the structure hLX ,_X ,^X ,5X , /0,Xi which we denote by Cm5(X).

Conversely, let L be a dicomplemented lattice and XL the set of all maximal pairs. Define a relation CL on
XL by xCLy if and only if x5�1

1 ✓ y2.

Theorem 6.2. Let L be a DL, and CL the relation on its Urquhart canonical frame defined by xCLy if and
only if x5�1

1 ✓ y2. Then, CL satisfies FC1 – FC3.

Proof. It was shown in [3] that CL satisfies FC1 – FC2. For FC3, suppose that x2 ✓ y2 and x2 ✓ z2. We need
to show that zCLy, i.e. a5 2 z1 implies a 2 y2 for all a 2 L; thus, suppose that a5 2 z1. Then, a5 62 z2, and
therefore, a5 62 x2, since x2 ✓ z2. It follows that a 2 x2, since x2 is primary, and x2 ✓ y2 implies zCy.

A 4 – frame is a structure hX ,1,2,Qi such that hX ,1,2i is a doubly ordered set, and Q is a binary
relation on X satisfying the following conditions:

FC1’. (8x,y,z)[xQy and y 1 z ) xQz], Q ; 1✓ Q,

FC2’. (8x,y,z)[z 2 x and xQy ) zQy], 2 ; Q ✓ Q,

FC3’. 8x,y)[xQy ) (9z)(x 2 z and yQz)] Q ✓ 2 ; Q˘.

FC4’. (8x,y,z)[x 1 y and x 1 z ) yQz and zQy)] �1 ; 1 ✓ Q\Q˘.

The class of all 4 – frames is denoted by Frm4. The following lemma lists some properties of Q which we
shall use later on.

Lemma 6.3. Suppose Q satisfies FC1’ – FC2’.

1. Q = Q ; 1.

2. [Q](Y ) ="2 [Q](Y ) for all Y 2 LX .

Proof. 1. Since 1 is reflexive, xQy implies x 1 xQy. The other direction is just FC1’.

2. Since 2 is reflexive, we have [Q](Y )✓"2 [Q](Y ). For the other direction, let x 2"2 [Q](Y ). Then, there is
some y 2 X such that y 2 x and Q(y)✓ Y . Let xQz; then, y 2 xQz, and FC2’ implies that yQz. Therefore,
z 2 Y since Q(y)✓ Y .

Theorem 6.4. Let X = hX ,1,2,Qi be a 4 – frame, and hLX ,_X ,^X , /0,Xi be its Urquhart complex
algebra. Furthermore, for Y 2 LX set

Y4X df
= [1]hQi(�Y ) 2. (6.2)

Then, Y4X 2 LX and hLX ,_X ,^X ,4X , /0,Xi satisfies (5.3) – (5.5).
24X is the operator defined in [9, p. 269] for dual sufficiency.
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Proof. Y4X 2 LX : We need to show that [1]h2i(Y4X ) = Y4X for Y 2 LX . Since [1]h2i is a closure
operator, we only consider the “✓” part. Let Y 2 LX . By Lemma 6.3(3), [Q](Y ) is 2 – increasing, in other
words, [2][Q](Y ) = [Q](Y ). Thus, [1]h2i[Q](Y ) = [1](�[Q](Y )) = [1]hQi(�Y ) = Y4X is stable.

5.3: Let Y 2 LX ; then

Y4X4X = [1]hQi(�Y4X ) (6.3)
= [1]hQi(�[1]hQi(�Y )) (6.4)
= [1]hQih1i[Q](Y ) (6.5)
= [1]hQ ; 1i[Q](Y ) by (2.2) (6.6)
= [1]hQi[Q](Y ) by Lemma 6.3(1). (6.7)

Thus,

hQi[Q](Y )✓ h2i(Y )) Y4X4X = [1]hQi[Q](Y )✓ [1]h2i(Y ) = Y. (6.8)

Thus, it suffices to show that hQi[Q](Y )✓ h2i(Y ). Let x 2 hQi[Q](Y ); then, there is some y 2 X such that
xQy and Q(y) ✓ Y . By FC3’, there is some z 2 X such that x 2 z and yQz. Now, Q(y) ✓ Y implies that
z 2 Y , and it follows that "2 x\Y 6= /0, i.e. x 2 h2i(Y ).
5.4: Suppose that Y ✓ Z ✓ X . Then, �Z ✓�Y and the fact that both [1] and hQi are isotone with respect
to ✓ implies that Z4X = [1]hQi(�Z)✓ [1]hQi(�Y ) = Y4X .

5.5: We need to show that Y ✓ (Y ^X Z)_X (Y ^X Z4X ) for all Y,Z 2 LX . By definition of the lattice
operations

(Y ^X Z)_X (Y ^X Z4X ) = [1]h2i((Y \Z)[ (Y \ [1]hQi(�Z))),

= [1]h2i(Y \ (Z [ [1]hQi(�Z))).

Since Y = [1]h2i(Y ) it is enough to show that X = Z [ [1]hQi(�Z). Thus, let x 2 X , and assume that
x 62 Z [ [1]hQi(�Z)); then, x 62 Z and x 62 [1]hQi(�Z). Thus, there is some y such that x 1 y, and
y 62 hQi(�Z), i.e. y 2 [Q](Z). By FC4’ we have yQx, and thus, x 2 Z, a contradiction.

If L is a DL, define a relation QL on XL by xQLy if and only if x4�1
2 ✓ y1.

Theorem 6.5. QL satisfies FC1’ – FC4’.

Proof. FC1’: Let xQy and y 1 z. Then, x4�1
2 ✓ y1 ✓ z1, showing xQz.

FC2’: Let x 2 z and zQy. Then, x2 ✓ z2 and z4�1
2 ✓ y1. Now, x2 ✓ z2 implies x4�1

2 ✓ z4�1
2 , and thus,

x4�1
2 ✓ y1. It follows that xQy.

FC3’: Let xQy, i.e. x4�1
2 ✓ y1. First, assume that a 2 y4�1

2 \ x2. Then, a4 2 y2 and a44 2 x2, since
a44  a and x2 is an ideal. Hence, a4 2 x4�1

2 ✓ y1, contradicting a4 2 y2. It follows that hy4�1
2 ,x2i is

a filter – ideal pair which can be extended to a maximal pair z. Then, x2 ✓ z2 and y4�1
2 ✓ z1, showing

z 2 zQ˘y.

FC4’: Let x,y,z 2 XL such that x1 ✓ y1 and x1 ✓ z1. Let a 2 y4�1
2 , i.e. a4 2 y2. Then, a4 62 y1, and x1 ✓ y1

implies that a4 62 x1. Since x1 is a primary filter by Corollary 5.6, it follows that a 2 x1. Hence, a 2 z1,
which implies yQz. Reversing y and z shows that zQy.
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We can now state our representation result. A DL–frame is a structure X = hX ,1,2,C,Qi such that
hX ,1,2i is a doubly ordered set, and C and Q are binary relations on X which satisfy, respectively, FC1
– FC3 and FC1’ – FC4’. Its complex algebra hLX ,_X ,^X ,4X ,5X , /0,Xi is denoted by CmDL(X).

Theorem 6.6. Each DL can be embedded into the complex algebra of its Urquhart canonical frame.

Proof. Let h : L ! CmCf(L) be defined by h(a) = {x 2 XL : a 2 x1}. It was shown in [12] that h is a lattice
embedding, so all that is left to show is that h preserves 4 and 5. First, recall that for all a 2 L,

h(a)4XL = [1]hQi(X \h(a)), Definition of 4XL (6.9)
= {x : (8y)[x 1 y ) y 2 hQi(X \h(a))]}, Definition of [1] (6.10)
= {x : (8y)[x 1 y ) Q(y)\ (X \h(a)) 6= /0]}, Definition of hQi (6.11)

= {x : (8y)[x 1 y ) (9z)(y�1
2 ✓ z1 and a 62 z1)]}, Definition of Q (6.12)

h(a)5XL = [C](X \h(a)), Definition of 5XL (6.13)
= {x : (8y)[xCy ) a 62 y1}, (6.14)

= {x : (8y)[x5�1
1 ✓ y2 ) a 62 y1}. (6.15)

h(a4) ✓ h(a)4XL : Let x 2 h(a4), i.e. a4 2 x1, and x1 ✓ y1. Then, a4 2 y1, and thus, a4 62 y2. It follows
that a 62 y4�1

2 , and therefore, y4�1
2 \ # a = /0. By Lemma 4.3 there is a maximal pair z such that y4�1

2 ✓ z1
and a 2 z2. This shows that yQz and z 62 h(a).

h(a)4XL ✓ h(a4): We prove the contraposition; thus, let x 62 h(a4), i.e. a4 62 x1. Then, x1\ # a4 = /0, and
by Lemma 4.3 there is some maximal pair y such that x1 ✓ y1 and a4 2 y2. By (6.12) it suffices to show that
a 2 z1 whenever y4�1

2 ✓ z1. Thus, let y4�1
2 ✓ z1. From a4 2 y2 we obtain a 2 y4�1

2 , and therefore, a 2 z1.

Next, we show that h preserves 5 as well.

h(a5) ✓ h(a)5X : Let x 2 h(a5), i.e. a5 2 x1. Suppose that xCy; then x5�1
1 ✓ y2 by definition of C. Now,

a5 2 x1 implies a 2 x5�1
1 , and x5�1

1 ✓ y2 implies a 2 y2. Since y1 \ y2 = /0 it follows that a 62 y1.

h(a)5X ✓ h(a5): Let x 2 h(a)5X , and assume that a5 62 x1. Then, a 62 x5�1
1 which is a proper ideal by

Lemma 5.7. Therefore, we can extend h" a,x5�1
1 i to a maximal pair y by Lemma 4.3. Since x 2 h(a)5X ,

and x5�1
1 ✓ y2, we obtain a 62 y1 by (6.15), contradicting " a ✓ y1.

7 Conclusion and outlook

We have shown that each dicomplemented lattice L can be embedded into the Urquhart complex algebra
CmU CfU (L) of its canonical frame. Since its lattice reduct is a canonical extension of L [2] this also shows
that the variety of dicomplemented lattices is canonical. In further work we intend to investigate the repre-
sentation problem raised in [6]: Is every dicomplemented lattice embeddable into a concept algebra? We
shall also endeavour to extend the logic based on doubly ordered frames presented in [9, Chapter 2.9] to the
dicomplemented case.

In view of Theorem 4.5 it would be interesting to know whether there is an axiomatic extension of doubly
ordered frames which would guarantee that hX ,1,2i can be embedded into CfU CmU (X). We suspect that
the class of such frames is not first order axiomatizable.
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