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Abstract

We investigate complex algebras of the form h2X ,hRi, [[S]]i arising from a frame hX ,R,Si where S ✓ R,
and exhibit their abstract algebraic and logical counterparts.

1 Introduction

Semantics of non-classical logics is provided either in terms of a class of algebras or a class of relational
systems (frames. The theme of finding an equivalent (i.e. validating the same formulas) frame (resp. and
algebraic) semantics once an algebraic (resp. frame) semantics is given has an extensive literature. One
part of the problem – passing from algebraic to frame semantics – is a subject of correspondence theory
[19]. Correspondence theory is well developed for logics whose algebraic semantics is based on distributive
lattices, possibly with additional operators, and require first order definable relations in the corresponding
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frames such as standard modal logics, intuitionistic logic, some intermediate and relevant logics. Less is
known for logics based on not necessarily distributive lattices. Equivalence of the two semantics can be
obtained from a discrete duality between the two underlying classes of structures [12].

In this paper we discuss the problem of finding a frame semantics for logics whose algebraic semantics
is based on what we call PS-algebras. These are Boolean algebras endowed with a normal and additive
operator (a possibility operator) and a co-normal and co-additive operator (a sufficiency operator).

A special class of PS-algebras are the mixed algebras (MIAs). These were introduced in [3] and further
investigated in [4]. The possibility part and the sufficiency part are related to each other by a second order
property expressed in terms of their respective canonical extensions. We provide an equivalent characteriza-
tion of mixed algebras in terms of the relations in their canonical frames.

Mixed algebras are not first order definable, and the complex algebras of their corresponding frames are
not necessarily MIAs, so, MIAs and their frames treated as semantic structures of a formal language do
not provide equivalent semantics for that language. However, for some axiomatic extensions of PS-algebras
there are frames such that the equivalence holds. We discuss two of such classes, namely, the class of right
ideal MIAs and the class wMIA of weak MIAs (wMIAs).We provide several universal-algebraic properties
of those classes, in particular, we exhibit the equational class generated by wMIA.

It turns out that Eq(wMIA) provides an algebraic semantics for the logic K˜ which was developed based on
the observation that the well known logic K as well as its sufficiency counterpart K? presented in [16] are
lacking in expressive power, and “necessity and sufficiency split the modal theory into two dual branches
each of which spreads over less than a half of the Boolean realm” [5]. Finally, using the copying technique
of [17] and the concept of special models of [5], we show that one frame relation suffices for wMIA frames:
If hB, f ,gi is a wMIA, then there is a frame hX ,Ri such that hB, f ,gi and a subalgebra of h2X ,hRi, [[R]]i
satisfy the same equations.

2 General definitions and notation

To make the paper more self–contained we recall a few concepts from Universal Algebra. Readers familiar
with these concepts may skip straight to Section 3. Let F be a signature of algebras, and X be a set of
variables. The set TF(X) of F terms over X is the smallest set such that

1. X ✓ TF(X),

2. Each constant is in TF(X),

3. If t1, . . . , tn 2 TF(X) and f 2 F is n – ary, then f (t1, . . . , tn) 2 TF(X).

In the sequel we assume that F is fixed, and we shall just write T (X); we also assume that T (X) 6= /0.
Furthermore, T (X) will be regarded as the absolutely free algebra over X with signature F, see [2, p.68].

If t is a term, we write t(x1, . . . ,xn) if the variables occurring in t are among x1, . . . ,xn. Suppose that A is an
algebra of type F. If t(x1, . . . ,xn) 2 T (X), the term function tA : An ! A is defined as follows:

T1. If t is the variable xi, then tA(a1, . . . ,an) = ai.
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T2. If f 2 F is k – ary and t has the form f (t1(x1, . . . ,xn), . . . , tk(x1, . . . ,xn)), then

tA(a1, . . . ,an) = fA(tA1 (a1, . . . ,an), . . . , tAk (a1, . . . ,an)). (2.1)

tA is called the term function of t (over A). For later use we mention the following fact:

Lemma 2.1. [2, Theorem 10.3] Let A,B be algebras of the same type and t(x1, . . . ,xn) be an n – ary term.

1. Suppose that ai,bi 2 A for 1  i  n and q is a congruence on A. If aiqbi for all 1  i  n, then

tA(a1, . . . ,an)q tA(b1, . . . ,bn).

2. If f : A!B is a homomorphism, then f (tA(a1, . . . ,an)) = tB( f (a1), . . . , f (an)).

An equation (or identity, see [2, Definition 11.1]) is an expression of the form t ⇡ s , where t,s 2 T (X).
If t,s 2 T (X) are n – ary and a1, . . . ,an 2 A, then the tuple ha1, . . . ,ani satisfies the equation t ⇡ s if
tA(a1, . . . ,an) = sA(a1, . . . ,an). If tA(a1, . . . ,an) = sA(a1, . . . ,an) for all tuples ha1, . . . ,ani 2 An, we say
that t ⇡ s is true in A, written as A |= t ⇡ s .

As no generality is lost, we shall tacitly assume that a class of algebras is closed under isomorphic copies.
If K is a class of algebras of the same type we denote by H(K) the collection of all homomorphic images of
K, by S(K) the collection of all subalgebras of K, and by P(K) the collection of all products of elements of
K. The equational class HSP(K) generated by K is denoted by Eq(K). Con(A) is the set of all congruences
on the algebra A.

Suppose that B = hB,^,_,¬,0,1i is a Boolean algebra. With some abuse of language we will usually
identify algebras with their base set if no confusion can arise. Note that a = b if and only if ¬((a^¬b)_
(b^¬a)) = 1, and thus for each equation t ⇡ s there is an equation t 0 ⇡ 1 such that B |= t ⇡ s if and only
if B |= t 0 ⇡ 1.

If A ✓ B and f : B ! B is a function, then f [A] = { f (a) : a 2 A} is the image of A under f . The dual of f is
the mapping f ∂ : B ! B defined by f ∂ (a) = ¬ f (¬a).

For the background of universal algebra we refer the reader to [2] and for frame and algebraic semantics of
modal logics to [1] or [7].

3 Possibility and sufficiency algebras

In this section we review the concepts of possibility and sufficiency algebras and their canonical extensions.

Traditionally, a modality – or an operator [10] – on a Boolean algebra is a function f : B ! B which satisfies
f (0) = 0 (normal), and f (a_ b) = f (a)_ f (b) (additive) for all a,b 2 B. In recent years, however, many
more operators with different properties have been considered in the study of modal logics, so that the term
may mean almost any intensional operator on B. In this paper we shall be concerned with the two modalities
possibility and sufficiency as well as operators definable from these and the Boolean operators.

A possibility operator on B is a normal and additive function f : B ! B; its dual f ∂ is called a necessity
operator. Clearly, a mapping g : B ! B is a necessity operator if and only if g(1) = 1 and g(a^ b) =
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g(a)^g(b) for all a,b,2 B. If f is a possibility operator on B, the pair hB, f i is called a possibility algebra.
Dually, if u is a necessity operator on B, the pair hB,ui is called a necessity algebra.

A sufficiency operator on B is a function g : B ! B which satisfies g(0) = 1 (co–normal), and g(a_ b) =
g(a)^ g(b) (co–additive) for all a,b 2 B. If g is a sufficiency operator on B, the pair hB,gi is called a
sufficiency algebra. To the best of our knowledge, sufficiency operators were first introduced to modal
logic by Humberstone [9]. In some sense, a sufficiency operator is the “complementary counterpart” to a
possibility operator. This will be made clearer in the next section.

For a Boolean algebra B, we let Bc = 2Ult(B) be its canonical extension [10], and h : B ,! Bc be the Stone
embedding, i.e. h(a) = {F 2 Ult(B) : a 2 F}. If f ,g : B ! B are operators on B, then two canonical
extensions f s ,gp : Bc ! Bc are defined by

f s (a) =
[
{
\
{h( f (x)) : x 2 F} : F 2 a}, (3.1)

gp(a) =
\
{
[
{h(g(x)) : x 2 F} : F 2 a}. (3.2)

In particular, if F 2 Ult(B), then

f s ({F}) =
\
{h( f (x)) : x 2 F}, (3.3)

gp({F}) =
[
{h(g(x)) : x 2 F}. (3.4)

There are representation theorems both for possibility and sufficiency algebras:

Theorem 3.1. Suppose that B is a Boolean algebra.

1. [10] If f is a possibility operator on B, then, f s is a possibility operator on Bc, and the Stone mapping
h : hB, f i ,! hBc, f s i is an embedding.

2. [3] If g is a sufficiency operator on B, then, gp is a sufficiency operator on Bc, and the Stone mapping
h : hB,gi ,! hBc,gpi is an embedding.

In particular, h( f (a)) = f s (h(a)) and h(g(a)) = gp(h(a)) for all a 2 B.

If f is a possibility operator on B and g a sufficiency operator, we call the structure hB, f ,gi a PS–algebra,
and hBc, f s ,gpi its canonical extension. Theorem 3.1 tells us that hBc, f s ,gpi is a PS–algebra, and h is an
embedding of PS–algebras. For the rest of this section, we suppose that hB, f ,gi is a PS–algebra.

If g is an operator on B we let g⇤(a) = g(¬a). Note that g⇤ and g are mutually term definable. Furthermore,
g is a sufficiency operator if and only if g⇤ is a necessity operator.

Theorem 3.2. There is a 1 – 1 correspondence between PS – congruences on B and (Boolean) filters which
are closed under f ∂ and g⇤.

Proof. It is well known (see e.g. [11]) that each Boolean congruence q is uniquely determined by a filter
Fq , where

Fq = {a 2 B : aq1},
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and, conversely, each filter F uniquely determines a congruence qF on B by

aqF b () (9t)[t 2 F and a^ t = b^ t].

Furthermore, it was shown in [14] that a Boolean congruence q preserves a necessity operator m if and only
if Fq is closed under m, i.e. a 2 Fq implies m(a) 2 Fq . Clearly, q preserves f if and only if it preserves
f ∂ , and q preserves g if and only if it preserves g⇤. Since both f ∂ and g⇤ are necessity operators, the claim
follows.

Define a mapping u : B ! B by

u(a) = f ∂ (a)^g⇤(a) = f ∂ (a)^g(¬a). (3.5)

Since both f ∂ and g⇤ are necessity operators, so is u.

A filter F of B is called a u – filter, if a 2 F implies u(a) 2 F for all a 2 B. Theorem 3.2 now immediately
implies

Corollary 3.3. There is a 1 – 1 correspondence between congruences on B and u – filters.

Proof. Let q be a congruence on hB, f ,gi; then, Fq is closed under f ∂ and g⇤ by Theorem 3.2. Thus, if
a 2 Fq , then f ∂ (a),g⇤(a) 2 Fq , and thus, u(a) = f ∂ (a)^g⇤(a) 2 Fq , since Fq is a filter.

Conversely, let F be a u – filter and a 2 F . Then, u(a) = f ∂ (a)^ g⇤(a) 2 F by the hypothesis, and thus,
f ∂ (a),g⇤(a) 2 F since F is a filter. Hence, qF is a PS – congruence, again by Theorem 3.2.

4 Algebras and frames

The set of all binary relations on a set X is denoted by Rel(X); if R1, . . . 2 Rel(X), the structure hX ,R1, . . .i
is called a frame. For x 2 X , we let R(x) = {z 2 X : xRz}. Relational composition and converse are denoted
by ; , respectively by ˘; furthermore, 10 is the identity relation.

For R 2 Rel(X), we define two operators on 2X by

hRi(S) = {x : (9y)[xRy and y 2 S]}= {x : R(x)\S 6= /0}. (4.1)
[[R]](S) = {x : (8y)[y 2 S ) xRy]}= {x : S ✓ R(x)}. (4.2)

We also set

[R](S) = hRi∂ (S) = {x : R(x)✓ S}. (4.3)

It is well known that hRi is a complete possibility operator on the power set algebra of X [10], and that [[R]]
is a complete sufficiency operator [3]. Note that

[[R]](S) = [�R](X \S), (4.4)

so that it may be said that [R] talks about the properties of R, while [[R]] talks about the properties of �R (see
also the discussion in [9]).
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The structure h2X ,hRii is called the full possibility (P) complex algebra of hX ,Ri, denoted by CmP(X ,R)
or just by CmP(X) if R is understood. Similarly, CmS(X) = h2X , [[R]]i is the full sufficiency (S) complex
algebra of hX ,Ri, and CmPS(X) = h2X ,hRi, [[R]]i is the full PS - complex algebra of hX ,Ri. A P (S, PS)
complex algebra is an algebra (isomorphic to) a subalgebra of some h2X ,hRii (h2X , [[R]]i, h2X ,hRi, [[R]]i).

The question arises whether the canonical extension of a possibility or a sufficiency algebra is isomorphic
to a structure h2U ,hRii or h2U , [[R]]i for some frame hU,Ri. In both cases, the answer is positive, and the
relation in question is uniquely determined:

Theorem 4.1. 1. [10, Theorem 3.10] If hB, f i is a possibility algebra, then there is, up to isomorphism,
a unique relation R f on Ult(B) such that hR f i= f s . This relation is defined by

FR f G () F 2 f s ({G}). (4.5)

The structure hUlt(B),R f i is called the P – canonical frame of hB, f i.

2. [3, Proposition 7] If hB,gi is a sufficiency algebra, then there is, up to isomorphism, a unique relation
Rg on Ult(B) such that [[Rg]] = gp . This relation is defined by

FRgG () F 2 gp({G}). (4.6)

The structure hUlt(B),Rgi is called the S – canonical frame of hB,gi.

The PS – canonical frame of a PS–algebra hB, f ,gi is the structure hUlt(B),R f ,Rgi. Theorem 3.1 and
Theorem 4.1 together now give us the following representation result:

This shows that the variety of PS–algebras is canonical in the sense of [8]. We also obtain the following
representation theorem:

Theorem 4.2. 1. Each PS–frame is embeddable into the canonical frame of its complex algebra.

2. Each PS–algebra is embeddable into the complex algebra of its canonical frame.

Here, a PS–frame is a structure hU,R,Si where R,S are binary relations on U , and its complex algebra is the
power set algebra of U with additional operators hRi and [[S]].

Finally in this section we mention an alternative description of the relations R f and Rg of (4.5), respectively,
(4.6) which does not explicitly use the canonical extension of B:

Lemma 4.3. 1. hF,Gi 2 R f () f [G]✓ F.

2. hF,Gi 2 Rg () F \g[G] 6= /0.

Proof. 1. “)”: This has been known for some time, see e.g. [20]. Suppose that hF,Gi 2 R f , i.e. F 2
f s ({G}). Then, for all x 2 G, f (x) 2 F by (3.3), which implies f [G]✓ F .

“(”: Suppose f [G]✓ F ; we need to show that F 2
T
{h( f (x)) : x 2 G}. Let x 2 G; then, f (x) 2 F by our

hypothesis, and thus, F 2 h( f (x)).

2. “)”: Let hF,Gi 2 Rg, i.e. F 2 gp({G}). By (3.4), there is some x 2 G such that g(x)2 F , in other words,
F \g[G] 6= /0.

“(”: Let F \g[G] 6= /0, say, x 2 G and g(x) 2 F . Then, F 2 h(g(x))✓
S
{h( f (y)) : y 2 G}= gp({G}).
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5 The class MIA

Suppose that hB, f ,gi is a PS–algebra. In the general definition, there is no relation between f and g, and
between their associated canonical frames hUlt(B),R f i and hUlt(B),Rgi. Of course, such connections may
exist: Consider, for example, the condition

f (a) = ¬g(a). (5.1)

It is not hard to see that the corresponding frame hUlt(B),R f ,Rgi satisfies the condition

R f = Ult(B)2 \Rg, (5.2)

and that the respective representations for algebras satisfying (5.1) and frames satisfying (5.2) hold (see also
Proposition 8 of [3]).

While the possibility algebras are the algebraic models of the logic K and the sufficiency algebras are the
algebraic models of its sufficiency counterpart K? [16], both are limited in their powers of expression if
considered separately. For example, h2X ,hRii can express reflexivity by

R is reflexive () Y ✓ hRi(Y ),

but it cannot express irreflexivity of R. On the other hand, h2X , [[R]]i can express irreflexivity by

R is irreflexive () [[R]](Y )✓�Y,

but not reflexivity. Neither h2X ,hRii nor h2X , [[R]]i can express antisymmetry on its own, but together they
can [4]:

R is antisymmetric () hRi([[R]](�Y )\Y )✓ Y.

Thus, it is worthwhile to consider the PS–algebras h2X ,hRi, [[R]]i obtained from a frame hX ,Ri with a single
distinguished relation. Let us denote the class of complex algebras of this form by CMIA.

Next, let us step back and consider a PS–algebra B = hB, f ,gi as a starting point. In [3], B was called a
mixed algebra (MIA), if in its PS – canonical frame hUlt(B),R f ,Rgi, the relations R f and Rg were equal,
and therefore, the full complex algebra of its canonical frame was of the form h2Ult(B),hRi, [[R]]i, where
R = R f = Rg; in other words, it is in CMIA. The following result now follows immediately from Theorem
4.1:

Theorem 5.1. [3, 10] Let hB, f ,gi be a PS–algebra. Then, there is a relation R on Ult(B) such that hRi= f s

and [[R]] = gp if and only if f s ({G}) = gp({G}) for all G 2 Ult(B). Furthermore, the relation R is unique
with this property.

The class of mixed algebras is denoted by MIA. Note that the MIA condition R f = Rg is a second order
axiom. Indeed, it was shown in [4] that MIA is not first order axiomatizable. Observe that B is a MIA if
and only if for all F,G 2 Ult(B),

f [G]✓ F () F \g[G] 6= /0 (5.3)

by Lemma 4.3.

Starting with a MIA leads to a canonical frame hUlt(B),R f ,Rgi with R f = Rg. On the other hand, using a
frame hX ,Ri as a starting point and considering the complex algebra h2X ,hRi, [[R]]i will not necessarily lead
to a MIA since not every algebra in CMIA is in MIA, as the following example shows:
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Example 1. This is based on Proposition 14 of [3]: Let X be infinite, and R = 10. If CmPS(X) is a MIA,
then, by (4.5) and (4.6), we must have RhRi = R[[R]].

Suppose that F,G are ultrafilters of 2X . Since R is the identity relation on X , hRi(a) = a for all a ✓ X , hence,
hRi[G]✓ F if and only if F = G. Suppose that a 2 G, |a|> 1. Then, x 2 [[R]](a)() a ✓ R(x) = {x}, and it
follows that [[R]](a) = /0. Thus, if G is non principal, then G\ [[R]][G] = /0 and it follows that h2X ,hRi, [[R]]i
does not satisfy (5.3).

Similarly, if R = (X ⇥X) \ 10, then hRi(a) = X for all a with |a| > 1, and thus, hRi[G] ✓ F for all non–
principal G 2 Ult(2X ) and all F 2 Ult(2X ); in particular, hRi[G]✓ G. On the other hand, [[R]](a) = X \a for
all a ✓ X , so that G\ [[R]][G] = /0. ⇤

Thus, not every PS – complex algebra of a structure hX ,Ri is a MIA, and we cannot have a general discrete
duality theorem between PS -frames hX ,R,Ri and canonical frames of complex algebras of h2X ,hRi, [[R]]i.

It is unknown which class of frames hX ,Ri have a full PS–complex algebra in MIA. A general characteri-
zation needs to be second order, since MIA is not first order axiomatizable. The only general property we
know which leads to a MIA is that of right ideal frames. Set 1 = X ⇥X . A binary relation R on X is called a
right ideal relation, if R ; 1 ✓ R, and the pair hX ,Ri is called a right ideal frame. The following observation
is already (implicitly) contained in [15], p. 79:

Lemma 5.2. R is a right ideal relation if and only if hRi(X) = [[R]](X).

Proof. “)”: Let x 2 hRi(X); then, R(x) 6= /0. If, say, xRy and z 2 X , then xRy1z, and R ; 1 ✓ R implies that
xRz. Hence, X ✓ R(x), and thus, x 2 [[R]](X). The other direction follows from Lemma 6.1 below.

“(”: Suppose that xRy and z 2 X ; we need to show that xRz. Since xRy, we have R(x) 6= /0, hence,
x 2 hRi(X). The hypothesis implies that x 2 [[R]](X), hence, X ✓ R(x); in particular, xRz.

A PS–algebra hB, f ,gi is called a right ideal algebra if f (1) = g(1).

Lemma 5.3. A right ideal algebra hB, f ,gi is a MIA.

Proof. We have to show the “)” direction of (5.3): Suppose that F,G are ultrafilters of B, and that f [G]✓F .
Then, in particular, f (1) 2 F , and thus, g(1) 2 F since B is a right ideal algebra. Now, 1 2 G implies that
F \g[G] 6= /0.

Since the complex algebra of a right ideal frame is a right ideal algebra by Lemma 5.2, we immediately
obtain

Theorem 5.4. The PS – complex algebra of a right ideal frame hX ,Ri is a right ideal algebra.

Theorem 5.5. The PS – canonical frame of a right ideal algebra hB, f ,gi is a right ideal frame.

Proof. Let X = Ult(B). In view of Lemma 6.1 below it suffices to show that hRi(X) ✓ [[R]](X). Let F 2
hRi(X); then, there is some G 2 X such that FRG. Since B is a MIA, R = R f , and thus, f [G] ✓ F , in
particular, f (1) 2 F . Since B is a right ideal algebra it follows that g(1) 2 F as well. We need to show that
F 2 [[R]](X), in other words that X ✓ R(F). Let H 2 X ; then, 1 2 H and g(1) 2 F shows that F \g[H] 6= /0,
hence, FRgH.
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6 The class wMIA

As the class MIA is too narrow to fully describe the properties of the class CMIA, let us start with the
properties of h2X ,hRi, [[R]]i 2 CMIA. The following observation shows how these algebras differ from
MIAs:

Lemma 6.1. 1. For all x 2 X,

hRi({x}) = [[R]]({x}). (6.1)

2. Let A,B ✓ X such that A\B 6= /0. Then, [[R]](A)✓ hRi(B).

Proof. 1. “✓”: let y 2 hRi({x}), i.e. yRx. Then, {x}✓ R(y), which shows that y 2 [[R]]({x}).

“◆”: y 2 [[R]]({x}). Then, {x}✓ R(y), and thus yRx. It follows that y 2 hRi({x}).

2. Let x 2 A\B; then, {x} ✓ A\B. Since [[R]] is a sufficiency operator, we have [[R]](A) ✓ [[R]]({x},
and the fact that hRi is a possibility operator implies hRi({x} ✓ hRi(B). The conclusion now follows from
(6.1).

Note that hRi({x}) = [[R]]({x}) only implies that in the canonical extension of CmPS(X) we obtain that
hRis (F) = [[R]]p(F) only for principal ultrafilters F of CmPS(X). Example 1 shows that it need not hold for
non–principal ultrafilters.

These observations lead to the following definition: A weak mixed algebra (wMIA) is a PS–algebra hB, f ,gi
such that

(8a,b)[a^b 6= 0 ) g(a) f (b)]. (6.2)

We shall denote the class of weak MIAs by wMIA. Note that, unlike MIA, the class wMIA is first order
axiomatizable, indeed, it is a universal class. There are several characterizations of weak MIAs:

Theorem 6.2. Let hB, f ,gi be a PS–algebra. The following are equivalent:

1. B is a weak MIA.

2. Rg ✓ R f .

3. gp({F})✓ f s ({F}) for all F 2 Ult(B).

4. (8a 2 B)[a 6= 0 ) g(a) f (a)].

Proof. 1. ) 2.: Let F \ g[G] 6= /0 and a 2 G with g(a) 2 F . Suppose that b 2 G; since a 2 G as well, we
have a^b 6= 0. It follows from (6.2) that g(a) f (b), and g(a) 2 F now implies that f (b) 2 F .

2. ) 3.: This follows immediately from the definitions of R f and Rg in (4.5) and (4.6).

3. ) 1: Suppose that a^ b 6= 0, and assume that g(a) 6 f (b), i.e. g(a)^¬ f (b) 6= 0. Then, there are
ultrafilters F,G such that g(a),¬ f (b) 2 F and a,b 2 G. Then, F \ g[G] 6= /0, and thus, it follows from
Lemma 4.3(2) and the definition of Rg that F 2 gp({G}). Then, by the hypothesis, F 2 f s ({G}), and it
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follows from the definition of R f and Lemma 4.3(1) that f [G] ✓ F . Since b 2 G it follows that f (b) 2 F ,
contradicting that ¬ f (b) 2 F .

Finally, we show that 4. ) 1., the other direction being trivial: Suppose that 4. holds, and that a^ b 6= 0.
Then, since g is antitone and f is isotone,

g(a) g(a^b)
4.
 f (a^b) f (b).

This completes the proof.

Observe that Theorem 6.2(3) shows that every MIA is a weak MIA. Since CmPS(hX ,Ri) is a weak MIA,
Theorem 6.2(2) shows that for all ultrafilters F,G of 2X in a weak MIA

F \ [[R]][G] 6= /0 ) hRi[G]✓ F. (6.3)

Theorem 6.2(2) suggests that we call a PS–frame hX ,R,Si a weak MIA frame, if S ✓ R. Even though we use
two relations, we have a connection between R and S by S ✓ R which is one direction of the MIA condition.
Our next result shows the correspondence between weak MIA frames and weak MIAs:

Lemma 6.3. 1. The complex algebra of a weak MIA frame is a weak MIA.

2. The canonical frame of a weak MIA is a weak MIA frame.

Proof. 1. Suppose that hX ,R,Si is a weak MIA frame. Let /0 6= Y ✓ X and x 2 [[S]](Y ). By 6.2(4) it
is sufficient to show x 2 hRi(Y ). Since x 2 [[S]](Y ), we obtain Y ✓ S(x), and therefore, Y ✓ R(x) by the
hypothesis. It now follows from Y 6= /0 that R(x)\Y 6= /0, hence, x 2 hRi(Y ).

2. Suppose that hB, f ,gi is a weak MIA. By Theorem 6.2(3) hUlt(B),R f ,Rgi is a weak MIA frame.

This gives us the representation theorem:

Theorem 6.4. 1. Each weak MIA frame is embeddable into the canonical frame of its complex algebra.

2. Each weak MIA is embeddable into the complex algebra of its canonical frame.

wMIA is closed under subalgebras and homomorphic images, but not under products, as we shall see below.

7 The equational class generated by wMIA

In this section we shall describe the equational class generated by wMIA. First, we show that a weak MIA
is a discriminator algebra. Recall the mapping u : B ! B defined in (3.5), namely,

u(a) = f ∂ (a)^g(¬a). (7.1)

It will turn out that u∂ is the unary discriminator. We have chosen to start with u as this mapping will be
important later.
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Theorem 7.1. Let hB, f ,gi be a PS–algebra. Then, B is a weak MIA if and only if

u(a) =

(
1, if a = 1,
0, otherwise.

(7.2)

Proof. “)”: First, consider a = 1. Then,

u(1) = f ∂ (1)^g(0) = ¬ f (0)^g(0) = 1,

since f (0) = 0, and g(0) = 1. Next, let a 6= 1. Then, ¬a 6= 0, and

g(¬a) f (¬a) By Theorem 6.2
¬ f (¬a)^g(¬a) = 0

f ∂ (a)^g(¬a) = 0
u(a) = 0,

“(”: Suppose that a 6= 0. By Theorem 6.2 it suffices to show that g(a) f (a). From a 6= 0 it follows that
¬a 6= 1, and thus, u(¬a) = 0 by the hypothesis. Now, by the definition of u,

u(¬a) = 0 () f ∂ (¬a)^g(a) = 0 () ¬ f (a)^g(a) = 0 () g(a) f (a).

This completes the proof.

Theorem 7.1 gives us yet another characterization of weak MIAs among PS–algebras.

Corollary 7.2. Each weak MIA is a discriminator algebra.

Proof. Let B be a weak MIA. We show that B has a unary discriminator, i.e. there is a mapping t : B ! B
for which

t(a) =

(
0, if a = 0,
1, otherwise.

Indeed, set t(a) = u∂ (a) = ¬u(¬a). Then, t fulfills the condition.

Observe that it follows that wMIA is not an equational class, since every discriminator algebra is simple. To
describe Eq(wMIA) we shall relax the condition that u∂ is the unary discriminator to the fact that u is an S5
necessity operator. Call a PS–algebra hB, f ,gi a K˜–algebra if u satisfies the following conditions:

u(a) a, (7.3)
u(a) u(u(a)), (7.4)

a  u(u∂ (a)). (7.5)
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The class of K˜–algebras is denoted by KMIA. The motivation for these algebras comes from the axiom
system of the logic K˜ of [5] which we shall discuss below.

It follows immediately from Theorem 7.1 that a weak MIA satisfies (7.3) – (7.5). Since KMIA is an equa-
tional class and wMIA is not, the inclusion wMIA ✓ KMIA is strict. It may be instructive to present a
concrete example:

Example 2. Suppose that |B| > 2, and let f be the identity on B and g be the Boolean complement. Then,
f is a possibility operator, g is a sufficiency operator, and therefore, hB, f ,gi is a PS–algebra. Furthermore,
f = f ∂ , and, for all a 2 B,

u(a) = f ∂ (a)^g(�a) = a^g(�a) = a, (7.6)

and thus, u∂ = u. Clearly, u satisfies (7.3) – (7.5), but is not a weak MIA. ⇤

The next result exhibits the precise connection between wMIA and KMIA:

Theorem 7.3. Eq(wMIA) = KMIA.

Proof. We shall show that

1. KMIA is semisimple, i.e. every subdirectly irreducible K˜ algebra is simple, and

2. The simple elements of KMIA are in wMIA.

Then, by Birkhoff’s Theorem (see e.g. [2, Theorem 11.12]), every K˜ algebra is isomorphic to a subdirect
product of weak MIAs, and thus, it is in the equational class generated by wMIA. The other direction
follows from wMIA ✓ KMIA.

Let hB, f ,gi 2 KMIA be subdirectly irreducible. By Corollary 3.3, the congruences of B are in 1 – 1 corre-
spondence with the u – filters of B, and therefore, hB,ui is subdirectly irreducible in the class of all Boolean
algebras with an additional necessity operator. By (7.3) and (7.4) we have u(a) = a^u(a)^u(u(a))^ . . .^
un(a), and therefore,

(9c 6= 1)(8a 6= 1)u(a) c (7.7)

by Rautenberg’s criterion [13, p. 155]. By (7.4) we may suppose that u(c) = c. Assume that c 6= 0. Then,
¬c 6= 1, and

¬c 
(7.5)

u(u∂ (¬c)) = u(¬u(c)) =
u(c)=c

u(¬c) 
(7.7)

c, (7.8)

a contradiction. It follows that u(a) = 0 for all a 6= 1, and, clearly, u(1) = 1. Hence, B is in wMIA by
Theorem 7.1.

We close this section by showing that KMIA is closed under canonical extensions by describing the canon-
ical frames. Call a frame hX ,R,Si a KMIA frame if R[�S is an equivalence relation.

Theorem 7.4. 1. Let hB, f ,gi be in KMIA, and hUlt(B),R f ,Rgi be its canonical frame. Then, R f [�Rg
is an equivalence relation.
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2. Let hX ,R,Si be a KMIA frame. Then, h2X ,hRi, [[S]]i is in KMIA.

Proof. 1. Let w be the dual of u; then, by the properties of u, w is normal additive closure operator in
which every open set is closed. It is well known from the properties of S5 that the canonical relation Rw on
Ult(B) is an equivalence relation. Note that hF,Gi 2 Rw if and only if w[G]✓ F . We are going to show that
Rw = R f [�Rg:

“✓”: Assume that this is not true, i.e. that there are F,G 2 Ult(B) such that

1. hF,Gi 2 Rw, i.e. (8a)[a 2 G implies f (a)_¬g(a) 2 F ].

2. hF,Gi 62 R f , i.e. (9b)[b 2 G and f (b) 62 F ].

3. hF,Gi 2 Rg, i.e. (9c)[c 2 G and g(c) 2 F ].

Let d = b^c; then, d  b. Since d 2 G we have f (d)_¬g(d)2 F . If f (d)2 F , then d  b implies f (b)2 F ,
contradicting 2. If, on the other hand, ¬g(d) 2 F , then d  c implies g(c)  g(d), since g is antitone. It
follows from 3. that g(d) 2 F , also a contradiction.

“◆”: Let hF,Gi 2 R f ; then f [G]✓ F . Suppose that a 2 G. Then, f (a) 2 F implies f (a)_¬g(a) 2 F , since
F is a filter. It follows that hF,Gi 2 Rw, and consequently, R f ✓ Rw. Next, assume that �Rg 6✓ Rw. Then,
there is some pair hF,Gi such that F \ g[G] = /0 and w[G] 6✓ F . The latter implies that there is some a 2 G
with w(g) 62 F . By definition of w this implies in particular that ¬g(a) 62 F , thus, g(a) 2 F , since F is prime.
Together with a 2 G this contradicts F \g[G] = /0.

2. Let hX ,R,Si be a KMIA frame, and define the mapping [U ]] : 2X ! 2X by [U ]](Y ) = [R](Y )\ [[S]](�Y ).
We need to show that [U ]] satisfies (7.3) – (7.5):

(7.3): Let x 2 [U ]](Y ). Then, x 2 [R](Y ) and x 2 [[S]](�Y ). By definition of [R] and [[S]], this implies
R(x)✓Y and �Y ✓ S(x). Since R[�S is reflexive, we obtain xRx or x(�S)x. If xRx, then R(x)✓Y implies
x 2 Y . If x(�S)x, then x 62 S(x), in particular, x 62 �Y .

(7.4): Let x 2 [U ]](Y ). As above, we have R(x)[�S(x)✓Y . We need to show that x 2 [U ]][U ]](Y ), in other
words, x 2 [R][U ]](Y )\ [[S]](�[U ]](Y )).

1. x 2 [R][U ]](Y ): Assume not. Then, R(x) 6✓ [U ]](Y ), and so there is some y such that xRy and y 62
[R](Y )\ [[S]](�Y ).

(a) y 62 [R](Y ): Then, R(y) 6✓ Y , and there is some z such that yRz and z 62 Y . This implies that
xRyRz, and the transitivity of R[�S implies that xRz or x(�S)z. Since R(x)[�S(x) ✓ Y we
obtain z 2 Y , a contradiction.

(b) y 62 [[S]](�Y ). Then, �Y 6✓ S(y), and there is some z such that z 62 Y and y(�S)z. Again by
transitivity of R[�S we obtain x(R[�S)z which again by R(x)[�S(x)✓ Y contradicts z 62 Y .

Thus, x 2 [R][U ]](Y ).
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2. x 2 [[S]](�[U ]](Y )): First, note that

x 2 [[S]](�[U ]](Y ))()�[U ]]✓ S(x)

() (8y)[y 62 [U ]](Y ) implies xSy]

() (8y)[x(�S)y implies y 2 [U ]](Y )]

() (8y)[x(�S)y implies y 2 [R](Y )\ [[S]](�Y )].

Thus, let x(�S)y.

(a) y 2 [R](Y ): Assume not; then, there exists some z such that yRz and z 62 Y . Thus, x(�S)yRz, and
the transitivity of R[�S implies that hx,zi 2 R[�S. It follows that z 2Y by R(x)[�S(x)✓Y ,
a contradiction.

(b) y 2 [[S]](�Y ): Assume not; then, there is some z such that z 62 Y and y(�S)z. As in the previous
case we obtain hx,zi 2 R[�S which implies z 2 Y , a contradiction.

It follows that [U ]] satisfies (7.4).

(7.5): Let x 2 Y ; we need to show that x 2 [R][U ]]∂ (Y )\ [[S]][U ]](�Y ).

1. x 2 [R][U ]]∂ (Y ): Assume not; then, there is some y such that xRy and y 62 [U ]]∂ (Y ). The latter implies
that y 62 hRi(Y )[�[[S]](Y ), i.e. R(y)\Y = /0 and Y ✓ S(y). Since R[�S is symmetric, xRy implies
yRx. Now, R(y)\Y = /0 implies x 62 Y , a contradiction.

2. x 2 [[S]][U ]](�Y ): Assume not; then, there is some y such that y 2 [U ]](�Y ) and x(�S)y. The first
condition implies that R(y)\Y = /0 and Y ✓ S(y). Since x 2 Y , we obtain ySx. On the other hand,
x(�S)y implies y(�S)x, a contradiction.

Thus, the PS–complex algebra of a KMIA frame is in KMIA.

This is similar to the situation that S5 is characterized by the class of frames hX ,Ri where R is an equivalence,
as well as by the class hX ,Ri, where R is the universal relation on X .

The following repreentation theorem now can be shown along the lines of Theorem 6.4:

Theorem 7.5. 1. Each KMIA frame is embeddable into the canonical frame of its complex algebra.

2. Each KMIA is embeddable into the complex algebra of its canonical frame.

8 The logic K˜

In 1985, Solomon Passy (under the name Sulejman Tehlikely) [16] presented a sufficiency counterpart K?

to K with the unary modal operator ⇡ (“window”) and additional axiom and rule

` ⇡¬(j ! y)! (⇡¬j ! ⇡¬y) (8.1)
If ` j, then ` ⇡¬j. (8.2)
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Let Fml⇤ be the set of formulas in the language of K⇤. The frame semantics is given by relational structures
hX ,S,vi with two binary relations in such a way that for a valuation v : Fml⇤ ! 2X which acts on the Boolean
connectives in the usual way, its action with respect to ⇡ is given by

x 2 v(⇡j)() v(j)✓ S(x), (8.3)

which may be interpreted as j is sufficient for accessibility from x if and only if v(j)✓ S(x), in other words,

Whenever y |=v j , then xSy.

Assuming the usual interpretation of 2, it is easy to see that

hX ,S,vi,x |= ⇡j () hX ,X2 \S,vi,x |=2¬j, (8.4)

so that axiomatization, completeness etc. of K? are reducible to the corresponding properties of K. Thus,
K⇤ has all the positive as well as the negative qualities of K.

Independently of earlier work by Goldblatt [6], van Benthem [18], Humberstone [9] and others, members
of the logic group at Sofia University presented a bimodal logic K˜ which unified the two approaches. Its
modal operators are the normal modality 2, the operator ⇡ satisfying (8.1), (8.2) and the condition that the
auxiliary operator [U ]j =2j ^⇡¬j is an S5 modality.

8.1 Frame semantics of K˜

Frame models1 have the form M = hX ,R,S,vi where S ✓ R ✓ X ⇥X , and v : Var ! 2X is a valuation over
the propositional variables which is extended over the Boolean operators in the usual way. With respect to
the modal operators, v acts as follows:

x 2 v(2j)() R(x)✓ v(j), (8.5)
x 2 v(⇡j)() v(j)✓ S(x). (8.6)

The base of a model hX ,R,S,vi is the structure hX ,R,Si. Observe that the base of a model of K˜ is a weak
MIA frame. A model hX ,R,S,vi of K˜ is called special if R = S, and we denote it just by hX ,R,vi.

We say that a formula j is satisfied in M at x 2 X with respect to v, written as x |=v j , if x 2 v(j). j is called
valid in M, written as M |=v j if x |=v j for all x 2 X , i.e. if v(j) = X . If hW,R,Si is the base of a model of
K˜ we say that j is true in hW,R,Si, written as hW,R,Si |= j , if hW,R,S,vi |=v j for all valuations based on
hW,R,Si. If j is true in all models, we write K˜ |= j .

Two models M = hX ,R,S,vi and M0 = hX 0,R0,S0,v0i of K˜ are called modally equivalent if for all j 2 Fml̃ ,

M |= j () M0 |= j. (8.7)

Theorem 8.1. [5]

1. K˜ is sound and complete with respect to its class of frame models.

2. If M = hX ,R,S,vi is a model of K ,̃ then, M is modally equivalent to a special model M = hX ,R,vi.
1These are called generalized models in [5]
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8.2 Algebraic semantics of K˜

If hW,R,Si is the base of a model of K ,̃ we consider its complex algebra h2W ,hRi, [[S]]i. By Lemma 6.3,
h2W ,hRi, [[S]]i 2 wMIA. For a PS–algebra hB, f ,gi, the structure hUlt(B),R f ,Rgi is a base of a model of K˜
if and only if B is a weak MIA, since S ✓ R in a model of K .̃

Let T (Var) be the term algebra over the language of K˜ with the set Var of variables; in other words, T (Var) is
the absolutely free algebra over the type of PS–algebras generated by Var. Thus, each formula j(p1, . . . , pn)
of K˜ can be regarded as an element of T (Var).

Lemma 8.2. Let M = hX ,R,S,vi be a model of K ,̃ and Bv = {v(j) : j 2 Fml̃ }.

1. Bv = hBv,\,[, /0,X ,hRi, [[S]]i 2 wMIA.

2. If B is a subalgebra of CmPS(M) and v is a mapping onto a set of generators of B, then B=Bv.

Proof. 1. By definition, the extension of v over T (Var) is a homomorphism T (Var)! CmPS(M), thus, Bv is
a subalgebra of CmPS(M). Since CmPS(M) 2 wMIA and wMIA is a universal class we obtain Bv 2 wMIA.

2. This follows again from the definition of the extension of v and the fact that v maps Var onto a set of
generators.

The system hM,Bvi is an instance of a general frame of [20], see also Sections 1.4 and 5.5 of [1], in particular,
Example 5.61.

If j(p1, . . . , pn) is a formula, its corresponding term function (as defined in T1 and T2) is denoted by
tBj (x1, . . . ,xn). We say that j(p1, . . . , pn) is valid in B, written as B |= j(p1, . . . , pn), if tBj (x1, . . . ,xn)⇡ 1.
In other words, B |= j(p1, . . . , pn) if and only if tBj (v(p1), . . . ,v(pn)) = 1 for all mappings v : Var! B. If
K is a class of algebras, then we define K |= j(p1, . . . , pn) if and only if B |= j(p1, . . . , pn) for all B 2 K.

Theorem 8.3. For all formulas j(p1, . . . , pn), K˜ |= j(p1, . . . , pn) if and only if WMIA |= j(p1, . . . , pn).

Proof. “)”: Suppose that K˜ |= j(p1, . . . , pn), and that B = hB, f ,gi 2 wMIA. By Theorem 6.4, we
may suppose that B is isomorphic to a complex algebra of a weak MIA frame hX ,R,Si. Then, hX ,R,Si |=
j(p1, . . . , pn) implies v(j(p1, . . . , pn)) = X for all valuations v : Fml̃ ! 2X , and therefore, in particular,
tBj (v(p1), . . . ,v(pn)) = 1 for all mappings v : Var!B. It follows that Cm(X) |= j(p1, . . . , pn), and there-
fore, B |= j(p1, . . . , pn).

“(”: Suppose that wMIA |= j(p1, . . . , pn), and that hX ,R,Si is a weak MIA frame with full complex
algebra B. Since B 2 wMIA and wMIA |= j(p1, . . . , pn), we have tBj (v(p1), . . . ,v(pn)) = X for all
mappings v : Var ! B. Since the extension of v over formulas is the term definition of j this implies
hX ,R,S,vi |= j(p1, . . . , pn).

Together with Theorem 8.1 we obtain the following algebraic completeness theorem:

Theorem 8.4. If j is a formula in K ,̃ then K˜` j if and only if Eq(wMIA) |= j .

Theorem 8.5. Let B= hB, f ,gi 2 wMIA. Then, there is some framehX ,Ri such that hB, f ,gi and a subal-
gebra of h2X ,hRi, [[R]]i satisfy the same equations.
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Proof. By the Löwenheim – Skolem Theorem we may suppose that B is at most countable, and by Theorem
4.2, we may suppose that B is a subalgebra of h2X ,hRi, [[S]]i for some weak MIA frame hX ,R,Si.

Let T = {an : n 2 N} be a set of generators of B, and define v : Var ! T by v(pn) = an. Since T generates
B, the extension v of v over the Lindenbaum – Tarski algebra L is a surjective homomorphism onto B.

Consider the model M = hX ,R,S,vi, then, B = Bv in the sense of Lemma 8.2, and M |= j if and only if
Bv |= j for all j 2 Fml̃ . Suppose that M0 = hX 0,R0,S0,v0i is modally equivalent to M, where M0 is a special
frame. Since the theorems of a model correspond to the equational theory of its general frame, it follows
that Eq(Bv) = Eq(Bv0).

Corollary 8.6. KMIA is the equational class generated by CMIA.
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