
COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

• VST: Virtual Studio Technology

• Created by Steinberg, makers of Cubase.
• A standard that permits plug-in modules to be implemented for host applications.
• Has become the most accepted standard, although others exist (RTAS for

Powertools, Audio Units in Mac OS X,...

• Three types of modules:
1. VST instrument: sound generator

 Normally a sampler or synthesizer.
 Many emulations of famous hardware synths exist.
 example: Arturia Moog Modular

2. VST effect: an audio effect processor
 takes sample data from host, alters it, and gives it back.
 example: echo

3. VST midi effect: processes midi data
 eg. arpeggiator: creates sequences of midi notes, perhaps from chord

input
• Versions of VST

• VST 2 (eg. 2.4)
 older, stable version
 recommended to use this for 4P98

• VST 3 (eg. 3.51)
 newer
 many optimizations and enhancements

• SDK:
o software developer’s kit
o class definitions for accessing data from host application
o documentation as well
o Many commercial applications publish SDK’s for their software

 Adobe, SoftImage,

• We will concentrate on audio effects here. Please look at the documentation for
information about VST instruments, and VST midi effects.

o Note that an audio effect assumes that a sample stream is available to process.
If there is no audio stream, then the effect can’t do anything.

o You may need to buffer the stream, depending on your effect. Circular buffers
(aka ring buffer, cyclic buffer) are very useful for this (see Wikipedia reference).

• Audio processing in VST uses 2 methods:

o process() :
 adds results to the output stream
 more efficient when lots of effects work on stream

COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

o processReplacing(): optional
 results replace output stream
 more efficient with chains or sequences of effects

• Some terms:

o parameters: user-defined values, obtained from user interface (eg. dial)
o program: this is a set of parameters. Some VST methods permit them to be

saved in files, for easy retrieval later.
o editor: this is a user-supplied GUI for their plug-in. If you don’t do this, then you

must use the default GUI of the host application.

• Data types:
o audio samples are 32-bit float, in range -1.0 to 1.0.
o parameters are 32-bit float, range 0.0 to 1.0.
o You will need to convert these to integers or whatever values make sense for

your plug-in.

• Structure of audio plug-in:
o AudioEffectX: base class

 you extend this
o constructor of your class: audioMasterCallback

 host passes this, which you pass to base class constructor
o some std flags and identifiers are set, and I/O requirements are declared
o You define some callbacks which the host will repeatedly call. These do the

work!

• Event-driven programming:
o Idea is to let your plug-in fit seamlessly into the host machine, and work in

parallel with it and other plug-ins.
o Host will call your plug-in methods when particular events need servicing.

 eg. User changes a parameter dial. New value must be transferred to
your plug-in code.

o Done via “callbacks” you define the code for special methods that are called by
host.

o This lets host execute your plug-in along with normal host processing, other plug-
in execution.

o Your callback methods should “do their thing” and release control back to host.
 If you write an infinite loop, then entire system may stall!

o This is the same kind of programming involved when developing Windows
applications, graphics/game programming, etc.

COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

• Potentially 2 different user interfaces can be used to control your plug-in:
o 1. Host has a “default interface”. Controls will be mapped to your plug-in

parameters.
 Ableton has a “bare bones” interface: simple and lean, but functional.

o 2. Optionally, you can define a GUI for your plugin.
 Those controls can be used to set parameters. They can also be

operated in parallel with the host controls.
 You supply “skins”.
 Will pay a penalty in CPU execution: graphics must be redrawn.

o Some bookkeeping required...
 get/set parameter values: User’s parameter changes must be sent back

and forth between plug-in and host. Host interface may be used to
change one of your parameters. It is then immediately sent to your plug-
in, which will save the value, and use it from then on.

 Likewise, your plug-in interface may set (default) parameter values, which
should be sent to host interface.

 Send names of parameters (for display in host interface), means for
displaying parameter values.

 Set/get program name: this gives the host the name of your plugin. Needs
to be labelled in the host environment.

• Following examples are discussed in detail here:

http://ygrabit.steinberg.de/~ygrabit/public_html/vstgui/V2.2/doc/2.0/examples.html

 NOTE: slight change in data types between VST 2.2 and 2.4; so 2.2 version examples
may need slight tweaking to compile in 2.4.

• Example 1: aGain (Simple gain, or volume control)
o (p.8-13, vst20sped.pdf; also sample code with VST SDK 2.4 zip file)
o File 1: aGain.cpp (with aGain.hpp)

 declaration section: indicate main features of plug-in.
 setProgramName and getProgramName: set and get the plug-in name
 setParameter and getParameter: set/get parameter values

• if more than one, they are indexed (see delay example)
• note: you may have to convert from/to float/integer, depending on

nature of parameter
 getParameterDisplay: converts param value to string (for host GUI

display)
 getParameterLabel: again, for describing value type in GUI

o File 2: aGainMain.cpp
 contains “main”
 controls interaction between host and plug-in

o Central processing is in the process/processReplacing

http://ygrabit.steinberg.de/~ygrabit/public_html/vstgui/V2.2/doc/2.0/examples.html�

COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

 take inputs (L and R), and multiply by a gain value to increase amplitude
 process: adds value to output
 processReplacing: sets output to value

o Notice how fgain value is automatically updated via setParameter. The fgain
variable should be defined in “aGain.hpp”, visible to all methods.

• Example 2: ADelay

o see sample code in VST SDK 2.4 zip file
o This has 3 user parameters: Delay, Feedback, and Volume
o Delay: number of seconds to pause before mixing delay back in

 multiply by sampling rate  number of samples to wait (and to buffer):
“delay”

 Buffer [0] to [delay] used, with wrap-around (circular buffer).
 max 44,100 samples (1 second @ 44.1K sampling rate)

o Feedback: strength of old (buffered) sound, when mixed in.
 simply a weight applied to old buffer values.
 Weight < 1.0: they always weaken.
 If weight = 0.0, no effect. If weight = 1.0, maximal mix (to point of

increasing distortion!)
o Volume (isn’t used (?))
o Main code for the delay effect:

void ADelay::processReplacing (float** inputs, float** outputs, VstInt32
sampleFrames)
{
 float* in = inputs[0];
 float* out1 = outputs[0];
 float* out2 = outputs[1];

 while (--sampleFrames >= 0)
 {
 float x = *in++;
 float y = buffer[cursor];
 buffer[cursor++] = x + y * fFeedBack; // delay calculation
 if (cursor >= delay)
 cursor = 0; // wrap-around the circular buffer
 *out1++ = y;
 if (out2) // stereo?
 *out2++ = y;
 }
}

• Firstly, the host is giving a chunk (block) of 1-channel input data to process, of
size “sampleFrames”.

o Idea is for plug-in to process a block of samples, and then return control
to host.

o This is preferrable than to (say) call the plug-in for each separate sample:
much too slow, would bring system to a grinding halt!

COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

• Your plug-in processes the block, and sends it on output (L&R).
o more sophisticated would have L&R input, and L&R output

• buffer contains input signal mixed with earlier buffer data
• that buffer may have signals mixed from earlier calls, etc.
• feedback occurs when delayed buffered sound overwhelms current input
• Once all the block is processed, control will resume with host.
• The output is put on pipelines to other plug-ins, and eventually to hardware

(sound card).

Some words O’wisdom...

• The SDK documentation will list the different callbacks and facilities available via the
SDK.

o For example, timing (tempo) information from host can be accessed. This can
allow a plug-in to synchronize its sound and effects to the beats of the main tune
in the host!

o Electronic dance musicians LOVE tempo-synchronized plug-ins!
• As far as I know, VST does NOT give the plug-in access to the hosts sample data

directly. In other words, you can’t access sample tables. You can only access audio
passed to your Audio effect plug-in.

• If you want to read entire samples into your plug-in (sample-based granular synthesis?),
you will need to find a suitable file I/O dialogue utility library (VS.net?). You will also have
to convert samples to audio if you want to save them in your plug-in.

• VST 3.51:
o New facilities, better organization and documentation.
o LOTS of example plug-ins: see “Plug-ins examples” in installed SDK.
o Includes access to open-source MDA plugins, which include filters and

instruments (soft synths, etc.). You might try them out, to see how things might
be done.

Advantages of developing VST plugins

• Many commercial systems can be hosts to your plugin: Ableton Live, Cubase, FL Studio,
Adobe products,

• Host can do much of audio file I/O, so long as you are implementing an effect.
• GUI’s easy to implement using VST “editor” concept. Just provide skin bitmaps for

buttons, components.
• Big advantage: Host can do all the difficult timing and tempo stuff!

o Musicians like plug-ins that synchronize to the host clock.
o Imagine making a delay or granular engine synchronize grains or effects with a

tempo.
• Your plug-in parameters can be recorded, edited, animated by host.
• Host can also integrate with external hardware: sound cards, MIDI interfaces.

o Your plugin doesn’t need to implement these low-level details.
o Easy way to have external hardware control your plug-in!

• Large VST developer community.
• Commercial possibilities!

COSC 4P98 Lecture notes: VST programming
March 9, 2012
B. Ross

References

• http://www.cosc.brocku.ca/Offerings/4P98/software.html
o latest VST references.

• http://www.cosc.brocku.ca/Offerings/4P98/local/VstSDK/
o main documentation, with examples, for VST 2.4
o Some description is here (but for earlier VST 2.0):

 http://www.cosc.brocku.ca/Offerings/4P98/assignments/vst20spec.pdf
• http://ygrabit.steinberg.de/~ygrabit/public_html/index.html

o Main site for SDK from Steinberg. The next link has above program examples…
o http://ygrabit.steinberg.de/~ygrabit/public_html/vstgui/V2.2/doc/2.0/examples.html

• http://www.asktoby.com/#vsttutorial
• Stromcode tutorial (please see me)
• www.kvraudio.com

o portal for VST technology
• http://en.wikipedia.org/wiki/Virtual_Studio_Technology
• http://en.wikipedia.org/wiki/Circular_buffer
• http://synthmaker.co.uk/

o a graphical VST editor!

http://www.cosc.brocku.ca/Offerings/4P98/assignments/vst20spec.pdf�
http://ygrabit.steinberg.de/~ygrabit/public_html/index.html�
http://ygrabit.steinberg.de/~ygrabit/public_html/vstgui/V2.2/doc/2.0/examples.html�
http://www.asktoby.com/#vsttutorial�
http://www.kvraudio.com/�
http://en.wikipedia.org/wiki/Virtual_Studio_Technology�
http://en.wikipedia.org/wiki/Circular_buffer�
http://synthmaker.co.uk/�

