
COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

• Many specialized programming environments and languages for music composition and

audio processing.
• Wikipedia pages:

1. http://en.wikipedia.org/wiki/Comparison_of_audio_synthesis_environments
2. http://en.wikipedia.org/wiki/Audio_programming_language

• Some critieria for evaluating them include:
1. Usability: technical skill needed to program them
2. Learnability: learning curve
3. Sound quality (subjective?)
4. Creative workflow: does it promote a creative process?
5. Performance: CPU usage, bandwidth, latency, concurrency
6. Stability
7. Support: user community, documentation, tutorials
8. Capabilities: what it can do (realtime?)
9. Integration with other systems

• Some languages are library extensions to conventional languages (C++, Python, Java)
• Others are standalone systems, developed with music processing in mind.

• Some examples (of many!):

1. CSound

• first released in 1986
• Large user community.
• Possibly the most powerful audio processing environment around.
• Many extensions: real-time processing, hooks to other languages
• Recently a VST version was released.
• very stable.
• Learning curve is not too bad, since it is a simple data-flow language.
• BUT... not as algorithmic as newer systems, and therefore not very suitable for

algorithmic composition. (But there are now extensions... see 2 below).
• We will look at it in detail (see CSound notes and lectures).

http://en.wikipedia.org/wiki/Comparison_of_audio_synthesis_environments
http://en.wikipedia.org/wiki/Audio_programming_language

COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

2. CSoundAC

• Python extension included in latest CSound distribution
• Permits Python statements to be used for generating CSound files.
• Opens up CSound to algorithmic composition.
• Python is stable, easy to learn.
• Example (from CSoundAC tutorial document).

• This code implements a “strange attractor”. As j iterates, y either converges, oscillates,
or never terminates. The code (in Python) generates lines for a CSound score file.

• See the complete example in the tutorial file.
• If you have an algorithm for generating notes (say), this Python extension lets you

implement that algorithm. The computed notes or other parameters are then written to
standard CSound score files.

• Without this, one would have to either manually write the score file (unlikely!) or have
another program do it, and then translate it into CSound syntax.

References:

• Tutorial by M. Gogins: https://www.dropbox.com/s/0d7rxjy7pqlx5w2/tutorial.zip
local Brock copy: http://www.cosc.brocku.ca/Offerings/4P98/local/tutorial.zip

• http://www.linuxjournal.com/content/introducing-csoundac-algorithmic-composition-
csound-and-python

r = 3.974
y = 0.5
time_ = 0.0
duration = 0.25
istatements = []

for i in xrange(1000):

y = r * y * (1.0 - y)
time_ = time_ + duration / 2.0
midikey = int(36.0 + (y * 60.0))
istatement = "i 1 %f %f %d 80\n" %
(time_, duration, midikey)
print istatement,
istatements.append(istatement)

score = string.join(istatements)

https://www.dropbox.com/s/0d7rxjy7pqlx5w2/tutorial.zip
http://www.cosc.brocku.ca/Offerings/4P98/local/tutorial.zip
http://www.linuxjournal.com/content/introducing-csoundac-algorithmic-composition-csound-and-python
http://www.linuxjournal.com/content/introducing-csoundac-algorithmic-composition-csound-and-python

COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

3. SuperCollider

• Introduced in 1996.
• Combines object-orientation, functional programming, C syntax
• very powerful environment.
• Real-time audio synthesis.
• Annual (?) conference on it.
• Multi-channel support. Very easy to convert a mono signal to 8 channels (for

example).
• Fairly steep learning curve. You need background in programming (OO,

Functional languages).
• Live coding: changing/editing code in real-time, to affect performance.
• EXAMPLE:

• CombN: comb delay, no interpolation
• “CombN.ar: process at audio sampling rate
• SinOsc: interpolating sine wave table oscillator
• LFNoise1: ramped noise
• LFSaw: sawtooth oscillator
• midicps: convert midi note # to frequency

Multi-channel:

(play(
 {
 CombN.ar(
 SinOsc.ar(
 midicps(
 LFNoise1.ar(3, 24,
 LFSaw.ar([5, 5.123], 0, 3, 80)
)
),
 0, 0.4),
 1, 0.3, 2)
 }
))

{ Bl i p. ar (25, LFNoi se0. kr (5, 12, 14) , 0. 3) } . pl ay / / s i ngl e channel

{ Bl i p. ar (25, LFNoi se0. kr ([5, 10] , 12, 14) , 0. 3) } . pl ay / / st er eo

{ Bl i p. ar (25, LFNoi se0. kr ([5, 10, 2, 25] , 12, 14) , 0. 3) } . pl ay / / quad

{ Bl i p. ar (25, LFNoi se0. kr ([5, 4, 7, 9, 5, 1, 9, 2] , 12, 14) , 0. 3) } . pl ay
/ / 8

COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

More examples: http://supercollider.sourceforge.net/audiocode-examples/

4. Processing and Beads

• Begin in 2001.
• Processing has become the programming language of choice of artists and

hobbyists (robots, interactive installations,...).
• Implemented in Java. Compilation will create Java code.
• Straight-forward language with high-level control, object-orientation, data types,

libraries. All of Java’s abilities.
• Interactivity is supported.
• Interfaces to external hardware, such as Arduino boards.
• Lots of audio libraries available

o p5_sc: interface with SuperCollider
o MidiBus: a MIDI library

• Beads: realtime audio library
• Library to extend Java to perform audio processing.
• Defines UGens (unit generators), a concept from SuperCollider.
• Beads is a basic library. Not as comprehensive as CSound or SuperCollider.
• Some of the classes:

o Synth: generate sounds
 WavePlayer: plays wave data in a buffer
 Noise: generates white noise

o Filter:
 OnePoleFilter: with cutoff freq
 LPRezFilter: Low-pass filter with resonance

o Effect:
 Reverb

o Sample playback
 GranularSamplePlayback: granular playback engine

http://supercollider.sourceforge.net/audiocode-examples/

COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

• EXAMPLE

• http://www.beadsproject.net/examples/Lesson7_Music/applet/index.html

5. Max

• Introduced around 1989.
• Commercial product (Cycling ’74)
• Named after Max Matthews (influential computer musician/scientist).
• Free variants: Pure Data, jMax.
• Visual programming language: Programmer inserts graphical modules, and connects

them.
• The connections are equivalent to variables or channels (see CSound instrument

definitions).
• New modules:

o MSP (Max Signal Processing): real-time audio processing
o Jitter: realtime video, 3D graphics

• Max for Live: integrate Max with Ableton Live. Permits high-level instrument and effecti
design, composition tools.

 new Bead() {
 //this is the method that we override to make the Bead do something
 public void messageReceived(Bead message) {
 Clock c = (Clock)message;
 if(c.isBeat()) {
 WavePlayer wp = new WavePlayer(ac, (float)Math.random() * 3000 + 100,
Buffer.SINE);
 Gain g = new Gain(ac, 1, new Envelope(ac, 0.1));
 ((Envelope)g.getGainEnvelope()).addSegment(0, 1000, new KillTrigger(g));
 g.addInput(wp);
 ac.out.addInput(g);
 }
 }

http://www.beadsproject.net/examples/Lesson7_Music/applet/index.html

COSC 4P98 Lecture notes: Music Programming Languages
Feb 24, 2014
B. Ross

•

• Example videos:
o Monolake granular: http://www.youtube.com/watch?v=9pn_b7OUO6I
o Plastikman: http://www.youtube.com/watch?v=PV3pfQFtjSg

http://www.youtube.com/watch?v=9pn_b7OUO6I
http://www.youtube.com/watch?v=PV3pfQFtjSg

