
Creatively Named Chess

Overview

Creatively Named Chess is a 3D OpenGL interface to the well known game of 

Chess. Creatively Named Chess also comes with a (not particularly smart) computer 

player which one can play against. Creatively Named Chess only supports play against a 

computer player, although play of two computers against eachother or two humans 

against eachother could be added with a relatively small amount of effort.

User Interface

Creatively Named Chess is operated almost entirely with the mouse. The board can 

be spun by dragging with the right mouse button, and the pieces may be selected and then 

moved with the left mouse button. When a piece is selected, it will be highlighted. Each 

piece is represented with a unique and somewhat abstract shape. Pawns are cubes, 

bishops are cones with a four point base, knights are ico-spheres, rooks are cylinders, 

queens are tori, and kings are cones with a many pointed base. White pieces are primarily 

white with black veins, while black pieces are primarily black with white veins. 

Additionally, the veins on the pieces shift over time to produce a nifty wave-like effect. 

The texturing for all pieces for a particular player is the same, to give the feeling of unity 

and teamwork.

Design

Creatively Named Chess employs a number of interesting techniques in the name of 

maximizing both simplicity and performance. These will be discussed briefly below.

One of the more pervasive design elements is the use of OpenGL display lists. 

OpenGL display lists allow one to essentially capture a stream of OpenGL commands 

into an immutable display list which can then be optimized by the driver and executed all 

in one call later on. In my previous experience with a particle volcano, OpenGL display 

lists were able to offer an order of magnitude better performance with a large number of 



particles when compared to the version without display list usage. Creatively Named 

Chess uses one OpenGL display list for each piece type, as well as an OpenGL display 

list for drawing the board.

The method used for handling selection of pieces is also an interesting aspect of 

Creatively Named Chess. When the player clicks on the window with the left mouse 

button, Creatively Named Chess renders the scene again into the backbuffer, except 

instead of using the regular method of rendering, each object is drawn with a uniquely 

identifying colour, and all lighting, shaders, texturing, etc are turned off. Using this 

hidden scene with uniquely identifying colours, Creatively Named Chess reads back the 

colour from the pixel that was clicked and can then map that back to what was actually 

clicked. The backbuffer is then cleared again and drawn normally before being swapped 

again for display. This method of selection is actually quite simple to implement and is 

completely transparent to the user. It also takes care of model rotation, the depth buffer, 

etc. OpenGL feedback/selection mode was investigated, but ultimately it seemed to be 

overkill for what was needed in Creatively Named Chess. Even for more complex 

worlds, the same technique could be used quite effectively, so I'm unsure of where 

OpenGL feedback/selection mode would be useful. Possibly if drawing the scene again 

was terribly expensive (even with minimal graphical effects), OpenGL feedback/selection 

mode would be useful, as it doesn't seem to require a redraw of the frame.

Since there is only a single OpenGL display list for each piece, they do not 

distinguish between white and black pieces, this is done elsewhere. Initially, a different 

lighting material value was set before calling a piece list, which would cause the colour 

of the piece to reflect which side it was on. Later on in development of Creatively Named 

Chess, shaders were added to give texture to the pieces, as well as to give them distinct 

colours. These shaders will be discussed in more detail below.

Originally, the computer AI was not run in a separate thread, and blocked all 

graphical display and user input until it completed thinking about its move. This wasn't 

particularly nice or elegant, but it was sufficient for then. To facilitate ease of use and 

smooth animation, later on in the development of Creatively Named Chess, a separate 



thread was spawned for the computer AI to think in, which actually has a number of 

benefits, the most obvious of which is that the user input and graphical updates are no 

longer blocked until the computer finishes thinking, but on today's increasingly common 

multicore systems, both the AI and graphical updates can be given full use of a single 

core, making thinking time shorter and graphical updates just as smooth as always.

As a direct consequence of the separate thread for AI, smooth animation of player 

moves was now possible, and was implemented almost immediately after. Each piece 

stores both its current position and its last position, along with a mixing factor that is 

updated every frame. The mixing value is a value between 0 and 1 which is incremented 

by the amount of time between the current frame and the last frame, effectively making 

animations one second long. The mixing value is used to smoothly mix the previous 

position and the new position as it increases, with a value of 0 meaning the piece is still at 

the original location, and a value of 1 meaning it has completed its journey to the new 

location. Also, since it looks somewhat strange to see pieces moving through other 

pieces, when animating a moving piece, the piece is also lifted into the air, such that it 

doesn't appear to pass through other pieces. After running Creatively Named Chess with 

smooth animations for the first time, I noticed that because the initial last place for all 

pieces with the same, when Creatively Named Chess was initially launched, all of the 

pieces would hop out from the same spot. This gave me the idea of putting the pieces in 

random places to start and having them hop into place as Creatively Named Chess starts. 

This is a completely superfluous but fairly neat looking effect.

After smooth animations were introduced, they were extended slightly by adding 

explosions of pieces when they were killed. More specifically, the piece was moved into 

a new list of pieces which is treated specially. The same animation mechanism is used 

with the mixing value and the updated once per frame, but in this case, a vertex shader is 

used to have all of the vertices move outward (and upward) along their normals by a 

factor of the mixing value. This gives a fairly convincing explosion like effect. I further 

refined this effect by first having the piece gradually shift to solid red and then explode in 

the same way as before, with the pieces turning to a dark ash colour as they fly out and 



then disappear. I originally had planned to do a similar effect, but using a field of point 

sprites in place of the  original model. This also produces a neat effect, but requires more 

to be done on the CPU rather than in a shader, and also requires a lot more particles to 

give a reasonable effect. So overall the point sprite method was quite a bit slower and I 

eventually ditched it. The point sprite idea was a good inspiration for the actually 

implemented effect though, so it wasn't all a loss.

Probably the most obvious effect, at least initially, is the simplex noise on all of the 

pieces which gradually shifts as time passes. This is done through a vertex and pixel 

shader, where a time value is passed into the shader and the model coordinates are used 

as parameters for the noise. Originally I was planning on simulating a marble or granite 

texture on the pieces, but when I first saw the slowly shifting simplex noise on the pieces 

I decided that it looked outrageously cool and stuck with it, making a few small tweaks to 

have the white pieces look more white and the black pieces to look more black. There are 

several different types of noise as well, although they all look fairly similar, these can be 

toggled fairly easily by changing the main function in the fragment shader. Also, GLSL 

incorporates noise functions as part of the standard API for both vertex and pixel shaders, 

but both Nvidia and ATI simply provide stub implementations of these functions that 

always return a constant value, and thus are not very useful. A little bit of research reveals 

that apparently the only vendor which does implementation the noise GLSL functions is 

Wildcat, which doesn't produce consumer level hardware. This is unfortunate, as noise is 

a very useful feature in graphics programs, although not trivial to implement, so it is 

perhaps understandable that most vendors do not implement it themselves. I hope in the 

future the GLSL noise functions will be implemented by more vendors in their respective 

OpenGL drivers.

When shaders are used, most OpenGL fixed function pipeline functionality is 

disabled, and thus must be emulated in the shaders if desired. It turns out that it is 

actually quite easy to do, as GLSL is meant for that sort of thing, and the values given to 

the OpenGL fixed function pipeline can be accessed from the shader, making the 

transition from fixed function to shader relatively painless. For example, lighting must be 



done by hand rather than by using the standard OpenGL fixed function pipeline when 

using shaders, but this only ends up being a couple lines of code. Not surprisingly, using 

the shader method for this is no slower than the OpenGL fixed function pipeline, at least 

on modern hardware. This isn't surprising as most vendors have scrapped all of their 

hardware OpenGL fixed function pipeline implementations and simply emulate the 

features using a shader, in a manner transparent to the user and programmer.

Finally, I don't like modeling or creating textures or anything similar, as it's much too 

artsy for me, and I have no talent for that sort of thing. Everywhere possible, procedural 

textures and models were used so as to avoid having to make them by hand. Overall, I 

think the result was fairly good.

Implementation

Creatively Named Chess is, of course, implemented in C++ and consists of a few 

different classes. The Board class is where most of the heavy lifting is done, such as 

rendering the board and all of the pieces, computer AI, and so on. The other two classes, 

Shader, and Model are abstractions for OpenGL shaders and Lightwave (.obj) format 

models, respectively. Getting shaders into OpenGL is a fairly involved process, and the 

Shader class is nice enough to abstract all of this away. All it needs to be passed is a list 

of files and what type of shader they contain, and it will compile, link and store the 

program id of them, reporting error messages (if any) to the programmer. Model is quite 

similar, in that it can be passed the file name of a model, and then it will parse the file and 

then allow one to call upon it's render method, such that the model may be captured into 

an OpenGL display list.

Many thanks go to Stefan Gustavson1 for providing a complete implementation of 

several types of noise under a permissive license. I have used this implementation in lieu 

of the standard OpenGL noise functions, and they worked quite well. This is also noted in 

the source.

1 http://staffwww.itn.liu.se/~stegu/simplexnoise/



Conclusion

Overall, a lot of neat effects can be had without too much effort, especially when 

taking advantage of shaders. With current generations of hardware making shaders no 

slower than the OpenGL fixed function pipeline, there is really no reason not to use them 

either, especially since what can be done with them vastly outstrips that which can be 

done with the OpenGL fixed function pipeline, at least when comparing similar amounts 

of code.


	Creatively Named Chess
	Overview
	User Interface
	Design
	Implementation
	Conclusion


