
Rendezvous Protocol … Page 1 of 11

Notes on Parallel Computing © 2002 V. Wojcik

PARALLELISM IN Ada:

The execution of an Ada program consists of the execution of one or more tasks.
Each task is a thread of control that proceeds independently and concurrently
between the points where it interacts with other tasks.

Task interaction takes various forms and include:

• The activation and termination of a task
• One task killing another task (via the use of an abort statement)
• Synchronous communication (by calling an entry of another task)
• Synchronous communication (by accepting an entry call of another task)

Every task must be declared and specified before its use.

• Declaration defines WHAT a task can do;
• Specification defines HOW a task does what it is supposed to do.

Examples of declarations of single tasks:

task User; -- has no entries

task Parser is
 entry Next_Lexeme(L : in Lexical_Element);
 entry Next_Action(A : out Parser_Action);
end;

task Controller is
 entry Request(Level)(D : Item); -- a family of entries
end Controller;

Rendezvous Protocol … Page 2 of 11

Notes on Parallel Computing © 2002 V. Wojcik

Examples of declarations of task types:

task type Server is
 entry Next_Work_Item(WI : in Work_Item);
 entry Shut_Down;
end Server;

task type Keyboard_Driver(ID : Keyboard_ID := New_ID) is
 entry Read (C : out Character);
 entry Write(C : in Character);
end Keyboard_Driver;

Examples of task objects:

Agent : Server;
Teletype : Keyboard_Driver(TTY_ID);
Pool : array(1 .. 10) of Keyboard_Driver;

Example of access type designating task objects:

type Keyboard is access Keyboard_Driver;
Terminal : Keyboard := new Keyboard_Driver(Term_ID);

On task activation:

procedure P is
 A, B : Server; -- elaborate the task objects A, B
 C : Server; -- elaborate the task object C
begin
 -- the tasks A, B, C are activated together before the
first statement
 ...
end; -- procedure P will quit only after A, B, C are dead

Rendezvous Protocol … Page 3 of 11

Notes on Parallel Computing © 2002 V. Wojcik

RENDEZVOUS:

an ADA technique for enforcing mutual exclusion,
 task synchronization and intertask communication

RENDEZVOUS PROTOCOL:

• exactly two tasks may rendezvous: a caller and a server
• the caller calls an entry in the server
• the server, when it is ready, issues the accept statement to receive the call
• if the caller calls an entry for which the server did not issue as yet an accept,

the caller is made to wait
• if the server issues an accept for an entry which the caller did not call yet,

the server is made to wait (at this accept) for a caller to call the entry
• rendezvous begins when the call is accepted
• during rendezvous, the caller waits while the server processes the accept

statement. Information may be exchanged the caller and the server via the
parameters of the entry call

• rendezvous ends when the server completes processing of the accept
statement

ASPECTS OF RENDEZVOUS:

• the caller(s) must know the existence of the server(s),
and the various server entries

• the server(s) need not to know any caller(s)
- they just accept calls from any caller

• many callers may attempt to call one server
• only one caller at a time may rendezvous with a given server
• other callers attempting to rendezvous with a server are kept waiting
• after a rendezvous, any waiting callers are served

on a first come, first serve basis

Rendezvous Protocol … Page 4 of 11

Notes on Parallel Computing © 2002 V. Wojcik

ACCEPT STATEMENT

Example of use, showing how to control access to a shared resource:

task RESOURCE_CONTROLLER is -- task specification
 entry GET_CONTROL;
 entry RELINQUISH_CONTROL;
end RESOURCE_CONTROLLER;
.
.
task body RESOURCE_CONTROLLER is -- task body
begin
 loop
 accept GET_CONTROL;
 accept RELINQUISH_CONTROL;
 end loop;
end RESOURCE_CONTROLLER;
.
.
RESOURCE_CONTROLLER.GET_CONTROL; -- example of use
.....; -- statement(s) using the resource
RESOURCE_CONTROLLER.RELINQUISH_CONTROL;

MODUS OPERANDI:

Tasks voluntarily cooperate with RESOURCE_CONTROLLER to ensure mutual
exclusion. If several tasks call GET_CONTROL at once, only one will be accepted,
all other clients' requests will be queued FIFO

Rendezvous Protocol … Page 5 of 11

Notes on Parallel Computing © 2002 V. Wojcik

CAVEATS:

This is essentially the same as a binary semaphore. If one task violates the
"gentlemen' s agreement", mutual exclusion cannot be guaranteed:

Example of erroneous or malicious use:

 RESOURCE_CONTROLLER.RELINQUISH_CONTROL;
 RESOURCE_CONTROLLER.GET_CONTROL;
; -- statements for illegal manipulation of resource

Rendezvous Protocol … Page 6 of 11

Notes on Parallel Computing © 2002 V. Wojcik

EXAMPLE: PRODUCER - CONSUMER RELATIONSHIP

• A producer task deposits an 80-character card image in a buffer;
• a consumer task removes the characters from the buffer one at a time until the

buffer is empty.

Issues of cooperation:

• a producer may not deposit a next line until the buffer empty;
• a consumer may not begin removing characters until a line has been deposited;
• after all characters have been removed, a consumer must wait for the

producer to deposit a new line.

type CARDIMAGE is array (1..80) of CHARACTER;

task CONVERTCARDIMAGE is
 entry DEPOSITCARD (CARD: in CARDIMAGE);
 entry READCHARACTER (NEXTCHARACTER: out CHARACTER);
end;

--

task body CONVERTCARDIMAGE is
 CARDBUFFER: CARDIMAGE;
begin
 loop
 accept DEPOSITCARD (CARD: in CARDIMAGE) do
 CARDBUFFER := CARD;
 end DEPOSITCARD;
 for POSITION in 1..80 loop
 accept READCHARACTER (NEXTCHARACTER : out
 CHARACTER) do
 NEXTCHARACTER := CARDBUFFER(POSITION);
 end READCHARACTER;
 end loop;
 end loop;
end;

Rendezvous Protocol … Page 7 of 11

Notes on Parallel Computing © 2002 V. Wojcik

Producer and consumer tasks are unaware of each other. They are aware only of
the existence of the CONVERTCARDIMAGE task, which coordinates their work, viz.:

task PRODUCER; -- specification (normally in one file)

--

task body PRODUCER is -- implementation (in another file)
 NEWCARD: CARDIMAGE;
begin
 loop
 -- statements to create NEWCARD
 CONVERTCARDIMAGE.DEPOSITCARD (NEWCARD);
 end loop;
end;

--

task CONSUMER; -- specification (normally in one file)

--

task body CONSUMER is -- implementation (in another file)
 NEWCHARACTER: CHARACTER;
begin
 loop
 CONVERTCARDIMAGE.READCHARACTER (NEWCHARACTER);
 -- statements processing NEWCHARACTER
 end loop;
end;

Rendezvous Protocol … Page 8 of 11

Notes on Parallel Computing © 2002 V. Wojcik

THE SELECT STATEMENT:

Entry calls need not be accepted in a prescribed, rigid fashion. A task may be
willing to accept several entry calls, one at a time but in indefinite order:

select
 when CONDITION1 = > accept ENTRY1;
 sequence of statements;
 or when CONDITION2 = > accept ENTRY2;
 sequence of statements;
 or . . .
 else
 sequence of statements;
end select;

Rules of selection:

• Each of the conditions (called guards) is evaluated once to be TRUE or FALSE.

If found TRUE, then the following accept statement is considered open;

• There may be several open accept statements. In particular, an accept
statement not preceded by a guard is always open;

• If there is an else part and no entry call to one of the open accept statements
has been made, then the else part is immediately executed. If there is no
else part, the task waits for an entry call.

• If there are no open accepts, the else part is executed. If there is no else
part, then a TASKING_ERROR exception is raised.

Rendezvous Protocol … Page 9 of 11

Notes on Parallel Computing © 2002 V. Wojcik

EXAMPLES:

Selective accept:

task body Server is
 Current_Work_Item : Work_Item;
begin
 loop
 select
 accept Next_Work_Item(WI : in Work_Item) do
 Current_Work_Item := WI;
 end;
 Process_Work_Item(Current_Work_Item);
 or
 accept Shut_Down;
 exit; -- Premature shut down requested
 or
 terminate; -- Normal shutdown at end of scope
 end select;
 end loop;
end Server;

Timed entry calls:

select
 Controller.Request(Medium)(Some_Item);
or
 delay 45.0;
 -- controller too busy, try something else
end select;

Rendezvous Protocol … Page 10 of 11

Notes on Parallel Computing © 2002 V. Wojcik

Conditional entry calls:

select
 Controller.Request(Medium)(Some_Item);
or
 delay 45.0;
 -- controller too busy, try something else
end select;

Time-limited calculation:

select
 delay 5.0;
 Put_Line("Calculation does not converge");
then abort
 -- This calculation should finish in 5.0 seconds;
 -- if not, it is assumed to diverge.
 Horribly_Complicated_Recursive_Function(X, Y);
end select;

Rendezvous Protocol … Page 11 of 11

Notes on Parallel Computing © 2002 V. Wojcik

EXAMPLE: THE RING BUFFER

The select statement allows the buffer task to service appropriate entry calls.
In particular:
• The guard BUFFERSINUSE < BUFFERS allows a call to WRITEPACKET to be

accepted whenever space is available,
• The guard BUFFERSINUSE > 0 allows a call to READPACKET to be accepted

whenever the buffer contains data.

type DATAPACKET is array (1..80) of CHARACTER;
----------------------------------- task specification:
task RINGBUFFER is
 entry READPACKET (PACKET: out DATAPACKET);
 entry WRITEPACKET (PACKET: in DATAPACKET);
end;
----------------------------------- task implementation:
task body RINGBUFFER is
 BUFFERS: constant INTEGER := 20;
 RING: array (1..BUFFERS) of DATAPACKET;
 BUFFERSINUSE: INTEGER range 0..BUFFERS := 0;
 NEXTIN, NEXTOUT: INTEGER range 1..BUFFERS := 1;
begin
 loop
 select
 when BUFFERSINUSE < BUFFERS = >
 accept WRITEPACKET(PACKET: in DATAPACKET) do
 RING (NEXTIN) := PACKET;
 end;
 BUFFERSINUSE := BUFFERSINUSE + 1;
 NEXTIN := NEXTIN mod BUFFERS + 1;
 or when BUFFERSINUSE > 0 = >
 accept READPACKET(PACKET: out DATAPACKET) do
 PACKET : = RING(NEXTOUT);
 end;
 BUFFERSINUSE := BUFFERSINUSE - 1;
 NEXTOUT:= NEXTOUT mod BUFFERS + 1;
 end select;
 end loop;
end RINGBUFFER;

