
Semaphores … Page 1 of 10

Notes on Operating Systems © 2002 V. Wojcik

The Concept and Use of Semaphores

Vlad Wojcik, Computer Science

"Every man, wherever he goes, is encompassed by a cloud of comforting
convictions, which move with him like flies on a summer day"

(Bertrand Russell, Sceptical Essays, 1928, "Dreams and Facts")

Semaphores … Page 2 of 10

Notes on Operating Systems © 2002 V. Wojcik

DEFINITION:

Semaphore: A data structure, initialized at boot time of the machine,

masquerading as a non – negative integer

PERMISSIBLE OPERATIONS:

Given a semaphore s, two non-divisible operations are defined:

signal(s) // increments s by one
wait(s) // decrements s by one as soon as it is possible

Notes:

signal(s) is NOT equivalent to s := s + 1
wait(s) is NOT equivalent to when (s > 0) s := s - 1

Value_of (s) = init(s) + number_of_signals(s)

– number_of_successful_waits(s)

PURPOSES:

1. Enforcement of mutual exclusion

2. Synchronization (between loosely coupled processes)

Semaphores … Page 3 of 10

Notes on Operating Systems © 2002 V. Wojcik

ENFORCEMENT OF MUTUAL EXCLUSION:

Critical section: section of program code

not simultaneously available to several processes

Wrong (naïve) solution:

while (gate == closed) continue;
gate := closed;
// Critical section code goes here;
gate := open;

Correct solution using a semaphore named mutex, initialized to 1:

wait(mutex);
// Critical section code goes here;
signal(mutex);

Practical example: adding / removing items from a queue (mutex initialized to 1):

Adding process Removing process
 . .
 . .
wait(mutex); wait(mutex);
add item to queue; remove item from queue;
signal(mutex); signal(mutex);
 . .
 . .

Semaphores … Page 4 of 10

Notes on Operating Systems © 2002 V. Wojcik

SYNCHRONIZATION:

We have two processes A and B. We require that A should not proceed beyond
point L1 until B reaches point L2. We use a semaphore proceed initialized to 0.

Code of A Code of B
 . .
 . .
L1 : wait(proceed); L2 : signal(proceed);
 . .
 . .

Semaphores … Page 5 of 10

Notes on Operating Systems © 2002 V. Wojcik

PRACTICAL EXAMPLE:

We have a pool of producer processes and another pool of consumer processes.
Items of information created by producers are disposed of by consumers.
The producers deposit their items in a buffer of capacity N. The consumers
remove items in order to dispose of them.

Reasons for synchronization of access to the buffer (of capacity N, contents n):

• It is impossible to extract items if n = 0
• It is impossible to deposit items if n = N
• Buffer access is critical

Semaphores used: mutex initialized to 1
 space_available initialized to N
 item_available initialized to 0

Producer processes Consumer processes
 . .
 . .
repeat forever: repeat forever:
begin begin
 produce item; wait(item_available);
 wait(space_available); wait(mutex);
 wait(mutex); extract item from buffer;
 deposit item in buffer; signal(mutex);
 signal(mutex); signal(space_available);
 signal(item_available); consume item;
end end

Semaphores … Page 6 of 10

Notes on Operating Systems © 2002 V. Wojcik

A NASTY BUG CHALLENGE:

Find the bug in this solution:

Semaphores used: mutex initialized to 1
 space_available initialized to N
 item_available initialized to 0

Producer processes Consumer processes
 . .
 . .
repeat forever: repeat forever:
begin begin
 produce item; wait(mutex);
 wait(space_available); wait(item_available);
 wait(mutex); extract item from buffer;
 deposit item in buffer; signal(mutex);
 signal(mutex); signal(space_available);
 signal(item_available); consume item;
end end

Semaphores … Page 7 of 10

Notes on Operating Systems © 2002 V. Wojcik

GLOBAL SEMAPHORE:

A semaphore available to a number of processes.
Each process is allowed to perform both wait and signal operations on this
semaphore.

TYPICAL USE: to protect mutually exclusive operations.

PRIVATE SEMAPHORE:

A semaphore available to a number of processes.
Each process is allowed to perform signal operations on this semaphore, but
only one process is allowed to perform the wait operation.

TYPICAL USE: by processes wishing to check if they may proceed.

Semaphores … Page 8 of 10

Notes on Operating Systems © 2002 V. Wojcik

EXAMPLE:

Whenever a process has to decide if it can continue, the sequence of operations is:

.
.
.
wait(mutex);
Inspect relevant storage registers;
if they show that the process can continue, then
 perform signal(private_semaphore);
signal(mutex);
.
.
.
wait(private_semaphore);

NOTE: mutex - global semaphore protecting the examination of registers (initially 1);
 private_semaphore - initially 0.

EXAMPLE:

When a process reaches a stage where one or more other processes may have
become free to proceed, the sequence of operations is:

.
wait(mutex);
Inspect and modify relevant storage registers;
perform signal operations on the appropriate private semaphores;
signal(mutex);
.

Semaphores … Page 9 of 10

Notes on Operating Systems © 2002 V. Wojcik

The semaphore system also formalizes the means whereby a process can safely
perform "privileged operation(s)" on behalf of other process(es).

Case study: disk transfers:

Usually the access to the disk is a privilege reserved to the disk manager process.
It has its own private semaphore DM, and there is a communication area in which
the details of transfers required by client processes are placed. The disk manager
can place there the feedback information as well.

This area may constitute a queue of requests of disk transfers. The global
semaphore Q protects this queue. It is set initially to n-1, where n is the maximum
number of requests that can be queued.

When a process wants a disk transfer to be performed on its behalf, the sequence
of instructions is as follows:

.
.
.
wait(Q);
wait(mutex);
record details of transfer on queue;
signal(mutex);
signal(DM);
wait(private-semaphore);
wait(mutex);
read answer-back information from the communications area;
signal(mutex);
.
.
.

Semaphores … Page 10 of 10

Notes on Operating Systems © 2002 V. Wojcik

The sequence of operations of a disk manager process:

.
.
.

START: wait(mutex);
read details of transfer from the queue;
pop-up the queue;
signal(mutex);
signal(Q);
perform the requested transfer to/from a disk;
wait(mutex);
record answer-back information in communications area;
signal(mutex);
signal(private_semaphore) -- of the client process;
wait(DM) -- on its own private semaphore;
goto START;

WARNING:
These examples illustrate the scheduling and synchronization problems only!

