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DEF: Parallel Computer: A set of processors capable of working
cooperatively to solve a computational problem.

BRIEF HISTORICAL OUTLINE:

Early contributors to the area of computing
were the mathematicians:

Late 1800’s: Frege creates the system of logic
(truth tables, rules of inference, etc.)

Early 1900’s: Church and Turing independently
ponder the issue of computability

The concept of the Turing machine:

Our present—day computers are due to von Neumann,
and adhere pretty strictly to the ”Turing architecture”
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TECHNOLOGICAL TRENDS (1)
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Peak performance of some of the fastest supercomputers, 1945--1995. The
exponential growth flattened off somewhat in the 1980s but is accelerating again
as massively parallel supercomputers become available. Here, 0" are
uniprocessors, = +" denotes modestly parallel vector computers with 4--16
processors, and X" denotes massively parallel computers with hundreds or
thousands of processors. Typically, massively parallel computers achieve a lower
proportion of their peak performance on realistic applications than do vector
computers. [source: Foster:3]
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TECHNOLOGICAL TRENDS (2)
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Trends in computer clock cycle times. Conventional vector supercomputer cycle
times (denoted ""0") have decreased only by a factor of 3 in sixteen years, from
the CRAY-1 (12.5 nanoseconds) to the C90 (4.0). RISC microprocessors (denoted
“"+") are fast approaching the same performance. Both architectures appear to be
approaching physical limits. [source: Foster:3]
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TECHNOLOGICAL TRENDS (3)
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Number of processors in massively parallel computers ("'0") and vector
multiprocessors ("' +"). In both cases, a steady increase in processor count is
apparent. A similar trend is starting to occur in workstations, and personal
computers can be expected to follow the same trend. [source: Foster:3]
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‘GRAND COMPUTATIONAL CHALLENGES

Computational performance required to crack the ” Grand
Challenge” problems:

_Grand Challenges
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Source: "Grand Challenges: High Performance Computing and Communications”
Report by the Committee on Physical, Mathematical and Engineering Sciences,

Office of Science and Technology Policy, U.S. Government, 1991.
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COST OF CHALLENGES (1)

Current State Needed Capability Cost

100-km resolution 10-km resolution 10%-10°

Simple process Improved process 2-10
representations representations

Simple ocean Fully coupled ocean 2-5

Simple atmospheric | Improved atmospheric 2-D
chemistry chemistry

Limited biosphere Comprehensive biosphere | about 2

Tens of years Hundreds of years 10-10?

Various refinements proposed to climate models,
and the increased computational requirements associated with these refinements.
Altogether, these refinements could increase computational requirements by
a factor of between 10%and 107. [source: Foster:3]
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COST OF CHALLENGES (2)

BREAKDOWN OF
SOFTWARE MAINTENANCE COSTS

“Source: After Lienz [1989]
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REALITY CHECK
We have vastly improved the computer components:

‘a new generation appears every 5 years
— chip density (i.e. memory capacity) * 4
— processing speed * 2

But we never dared to stray from the basic architecture, so:
the price of computing equipment stays at $200/Ib,
we created languages for serial programming
thus painting ourselves into a corner (mental block)

Lately, we have got a feeling that all that is inadequate,
because:

‘we want to use computer as tools in the real world;

in the real world things happen in parallel:
serializing parallel actions can be done easily
but you have to analyze in order to parallelize!
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'CURRENT TECHNOLOGICAL LIMITATIONS:

Partial list:

1. Most computers are of fixed architecture,
forcing us to adapt problem solutions to the
architectures available,

2. Most CASE tools preach software reusability,
instead of allowing automatic software modi-
fication to fit the solution—driven computer
architectures.
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MACHINE MODELS:
The von Neumann Computer

Instructions

$18D (von Neumann)
Architecture

A central processing unit (CPU) executes a program that performs a
sequence of read and write operations on an attached memory.

MACHINE MODELS:
The Multicomputer
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An idealized parallel computer model. Each node consists of a von
Neumann machine: a CPU and memory. A node can communicate with
other nodes by sending and receiving messages over an interconnection
network. [source: Foster:3]
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MACHINE MODELS:
Sample Supercomputer Architectures
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Classes of parallel computer architectures. From top to bottom:

a distributed-memory MIMD computer with a mesh interconnect,

a shared-memory multiprocessor, and a local area network

(in this case, an Ethernet). In each case, P denotes an independent
processor. [source: Foster:3]
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'PARALLEL PROCESSING:

Parallelism: Many operations performed concurrently.

Interaction: ‘Cooperation between parallel streams
of operations (processes).

This approach promises significant performance
improvements, but first we must solve the problems of:

— process synchronization,

— interprocess communication
— deadlock,

— livelock
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TYPES OF PARALLELISM

Covert parallelism:

‘parallelism is NOT visible to the programmer,
compiler extracts parallelism from sequential,
algorithms and problem decompositions,
small speedups (typically *10 — *30).

Overt parallelism:

‘parallelism is visible to the programmer,
programmer has better understanding of
the problem at hand than any compiler,
usage of parallel algorithms is facilitated,
problem decompositions are facilitated,
large speedups (*1000 and greater) typical.
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'MEASURES OF PARALLELISM

Speedup:

‘Speed of parallel algorithm

Speedup = —
Speed of BEST sequential algorithm

Node efficiency:

] T
E,=
7N77v
Area efficiency:
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'NODE EFFICIENCY vs. AREA EFFICIENCY

‘Node efficiency En = Ti/NTn leads to machines with a few
large nodes:

r\ode

NOTE: If S represents
speedup, we have:
S

NN

\

4%
QUESTION: Is E ,> 1 possible?

///

AN

Area efficiency Ea = T1A1//TvAn leads to machines with many
small nodes:

Most promising; allows:
Further miniaturization
‘Computing styles:

— Node

— Eager
- Just-in-time
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